

Development of a Dynamic Design Framework

for Relational Database Performance Optimisation

Mr. Derek Andrew Colley

Student identifier: 16025973

Principal Supervisor: Dr. Md Asaduzzaman

Second Supervisor: Mr. Euan Wilson

A thesis submitted in partial fulfilment of the requirements of

Staffordshire University for the degree of Doctor of Philosophy

Submitted February 2021

Amended with corrections, August 2021

Word count: 79,350, excluding Appendices.

- 1 -

Abstract

Relational Database Management Systems (RDBMSs) are advanced software packages

responsible for providing storage and access to relational databases; data stores in which

data is arranged in schemas, which are interlinked tables, each table constituted of

columns and rows, and each intersection containing a data point.

This project considers the impact that the ever-increasing demand in data volume,

velocity and variety, combined with changes in query methodology and uptake of object-

relational mapping frameworks driven by modern object-oriented application programming

practices, have had upon the effectiveness of the relational database query optimiser; in

particular, this research examines the emergence of object-relational impedance mismatch

and the corresponding effect on query processing efficiency within the database engine.

Firstly, this research reconsiders the query parsing and caching mechanisms within current

RDBMSs and notes their deficiencies in query plan re-use. An alternative mechanism for

query representation is presented, representing queries as multidimensional structures

which are computable, comparable, and reducible to hashes. It is shown how this

representation can be used to improve plan re-use and increase the efficiency of the query

optimiser.

Secondly, new multidimensional representations in real-time are demonstrated using

weighted k-means clustering with self-adjusting weights and k to predict superior sub-

schema selection, including application of queries to an alternative sub-schema of data,

reducing resource consumption and improving query execution times. This is validated

against a real data set and performance is tested at scale. It was found that use of KNN

provided the relational database query optimiser with an increasing degree of accuracy

and reliability in query classification, with an improvement in query execution time

demonstrated at scale, against lifelike database queries, ranging from 6.2% to 20.6%.

Finally, a novel method of dynamic schema redefinition is presented. This process defines,

creates and destroys sub-schemas, maps queries to their sub-schema variants, and keeps

track of performance metrics, self-adjusting the current library of alternative schema

representations available. This is defined theoretically against the backdrop of the

relational algebra and ZFC axiomatic set theory.

- 2 -

Acknowledgements

I would like to acknowledge and thank my supervision team:

Dr. Md Asaduzzaman, Euan Wilson, and Dr. Clare Stanier

for their superb advice, direction, and support throughout this project.

- 3 -

List of Publications

• Colley, D. and Asaduzzaman, M. (2021). ‘A Novel Method for Calculating Query

Hashes for Improved Query Grouping in Relational Database Management

Systems’. Springer Nature - Book Series: Transactions on Computational Science

& Computational Intelligence (and 21st International Conference on Information

and Knowledge Engineering). In press. Available at:

https://tinyurl.com/2ac6uxnz (Accessed 02 August 2021).

• Colley, D. and Asaduzzaman, M. (2020). ‘Derivation of Dynamic Schema

Definitions from Query Patterns in Relational Databases for Improved Query

Execution Efficiency’. Preprint. Available at: https://tinyurl.com/y53eeapt

(Accessed 18 January 2021).

• Colley, D., Stanier, C., and Asaduzzaman, M. (2020). ‘Investigating the Effects of

Object-Relational Impedance Mismatch on the Efficiency of Object-Relational

Mapping Frameworks’. Journal of Database Management, 31(4). Available at:

https://www.igi-global.com/article/investigating-the-effects-of-object-relational-

impedance-mismatch-on-the-efficiency-of-object-relational-mapping-

frameworks/266402 (Accessed 18 January 2021).

• Colley, D., Stanier, C. and Asaduzzaman, M. (2018). ‘The Impact of Object-

Relational Mapping Frameworks on Relational Query Performance’. International

Conference on Computing, Electronics & Communications Engineering (ICCECE

'18). Available at: https://ieeexplore.ieee.org/document/8659222 (Accessed 18

January 2021).

• Colley, D. and Stanier, C. (2017). ‘Identifying New Directions in Database

Performance Tuning’. Procedia Computer Science, vol. 121, pp.260-265. Available

at: https://www.sciencedirect.com/science/article/pii/S1877050917322275

(Accessed 18 January 2021).

https://tinyurl.com/2ac6uxnz
https://tinyurl.com/y53eeapt
https://www.igi-global.com/article/investigating-the-effects-of-object-relational-impedance-mismatch-on-the-efficiency-of-object-relational-mapping-frameworks/266402
https://www.igi-global.com/article/investigating-the-effects-of-object-relational-impedance-mismatch-on-the-efficiency-of-object-relational-mapping-frameworks/266402
https://www.igi-global.com/article/investigating-the-effects-of-object-relational-impedance-mismatch-on-the-efficiency-of-object-relational-mapping-frameworks/266402
https://ieeexplore.ieee.org/document/8659222
https://www.sciencedirect.com/science/article/pii/S1877050917322275

- 4 -

Table of Contents

Abstract --- - 1 -

Acknowledgements -- - 2 -

List of Publications --- - 3 -

Table of Contents --- - 4 -

List of Tables, Figures, Algorithms and Code Listings --- - 7 -

Chapter 1: Research Introduction -- - 8 -

1.1 Introduction -- - 8 -

1.2 Research Motivation -- - 8 -

1.4 Research Questions, Aims and Objectives --- - 10 -

1.4 Research Approach -- - 12 -

1.5 Ethical Issues -- - 25 -

1.6 Thesis Structure -- - 26 -

1.7 Novel Contributions to Knowledge -- - 28 -

1.8 Chapter Summary -- - 29 -

Chapter 2: Background -- - 30 -

2.1 Introduction --- - 30 -

2.2 Relational Database Management Systems -- - 30 -

2.3 Query Representation and Comparison --- - 33 -

2.4 Query Representation and Execution --- - 37 -

2.5 Query Optimisation -- - 43 -

2.6 Chapter Summary -- - 48 -

Chapter 3: Literature Review -- - 50 -

3.1 Introduction --- - 50 -

3.2 Literature Review Methodology -- - 50 -

3.3 Database Performance Tuning -- - 50 -

3.4 Query Tuning and Frameworks --- - 54 -

3.5 Existing Query Parsing Techniques -- - 56 -

3.6 Object-Relational Mapping Technologies -- - 4 -

3.8 Conclusions -- - 11 -

3.9 Chapter Summary -- - 12 -

Chapter 4 - Problem Investigation --- - 13 -

4.1 Introduction --- - 13 -

4.2 Domain Expert Investigation - Survey -- - 14 -

4.3 Domain Expert Investigation - Interviews --- - 19 -

- 5 -

4.4 Conclusions from Domain Expert Investigations --- - 24 -

4.5 Experimental Investigations --- - 26 -

4.6 Chapter Summary -- - 43 -

Chapter 5 - Solution Design --- - 45 -

5.1 Introduction --- - 45 -

5.2 Context --- - 45 -

5.3 Solution Overview -- - 46 -

5.4 Principal PETAS components -- - 47 -

5.5 Queries as Graphs – the Query Parser and Similarity Scorer ------------------------------- - 52 -

5.6 The Schema Classifier and Query Mapper --- - 66 -

5.7 Dynamic Schema Redefinition -- - 69 -

5.8 Chapter Summary -- - 77 -

Chapter 6 – Testing: Query Representation --- - 78 -

6.1 Introduction --- - 78 -

6.2 Design --- - 79 -

6.2 Algorithmic Implementation --- - 84 -

6.3 Practical Implementation--- - 89 -

6.4 Experimental Design -- - 94 -

6.5 Testing and Results -- - 97 -

6.6 Conclusions -- - 98 -

6.7 Chapter Summary -- - 99 -

Chapter 7 – Testing: Similarity Scoring and Schema Selection ------------------------------------- - 100 -

7.1 Introduction --- - 100 -

7.2 Algorithmic Implementation --- - 104 -

7.3 Practical Implementation--- - 110 -

7.4 Experimental Design -- - 111 -

7.5 Testing and Results -- - 118 -

7.6 Conclusions --- - 2 -

7.7 Chapter Summary --- - 3 -

Chapter 8 – Testing: Dynamic Schema Redefinition --- - 4 -

8.1 Introduction -- - 4 -

8.2 Algorithmic Implementation -- - 4 -

8.3 Practical Implementation-- - 7 -

8.4 Experimental Design --- - 9 -

8.5 Testing and Results -- - 11 -

8.6 Conclusions -- - 19 -

8.7 Chapter Summary -- - 21 -

Chapter 9: Conclusions and Future Work --- - 23 -

- 6 -

9.1 Introduction --- - 23 -

9.2 Problem Investigation --- - 23 -

9.3 Query Representation --- - 26 -

9.4 Similarity Scoring and Schema Selection --- - 28 -

9.5 Dynamic Schema Redefinition -- - 30 -

9.7 Assessing the Research Questions, Aims and Objectives ------------------------------------- - 33 -

9.8 Future Research Directions -- - 39 -

9.9 Chapter Summary -- - 40 -

References -- - 41 -

Chapter 1 -- - 41 -

Chapter 2 -- - 43 -

Chapter 3 -- - 47 -

Chapter 4 -- - 53 -

Chapter 5 -- - 54 -

Chapter 6 -- - 56 -

Chapter 7 -- - 56 -

Chapter 8 -- - 56 -

Chapter 9 -- - 57 -

Appendix A – Practitioner Survey Structure -- - 58 -

Appendix B: Strong sentiment groupings from interview analysis ---------------------------------- - 80 -

Appendix C: Query objectives and code listings from the initial investigation ------------------- - 85 -

Appendix D: Similarity scoring and schema selection – code listings ------------------------------ - 89 -

Appendix E: Dynamic schemas – algorithms and code -- - 102 -

E.1 Implementation of the query parser component --- - 102 -

E.2 Temporary table creation --- - 104 -

E.3 Implementation of the analyse MVs/use metadata component ------------------------ - 106 -

E.4 Implementation of the create and destroy MVs component ---------------------------- - 115 -

E.5 Implementation of the Query Generator and Caller (for Testing Purposes)------- - 130 -

- 7 -

List of Tables, Figures, Algorithms and Code Listings

Chapter 1 Chapter 6 (cont’d)

Fig. 1.1: The ‘Research Onion’ 15 Alg.6.10: Funct’n variant of query parser 148

Fig. 1.2: Three-Phase Research Plan 18 Alg. 6.11: Converting edge list to a cube 149

Tab. 1.3: A sample of topics 19 Cd. Lstg. 6.12: Algorithm 1 in Python 149

Fig. 1.4: Grounded-theory approach 20 Cd. Lstg. 6.13: Algorithm 2 in Python 149

Fig. 1.5: The original spiral methodology 24 Cd. Lstg. 6.14: Algorithm 3 in Python 150

 Cd. Lstg. 6.15: Algorithm 4 in Python 151

Chapter 2 Fig. 6.16: Screenshot from edge builder 152

Fig. 2.1: Illustration of a theta-join 35 Cd. Lstg. 6.17: Conversion to multi. array 152

Fig. 2.2: The query execution cycle 38 Cd. Lstg. 6.18: Fun’d cube build code 153

Fig. 2.3: Two execution plans compared 40 Cd. Lstg. 6.19: Randm’d query generator 154

Fig. 2.4: Illust. of a normalised database query 45 Fig. 6.20: Randomly generated queries 156

Fig. 2.5: Illust. of a de-normalised DB query 45 Tab. 6.21: Funct’l transformat’n testing 157

Tab. 2.6: Relative costs comp’d between queries 46 Fig. 6.22: Duration statistics 157

Chapter 3 Chapter 7

Fig. 3.1: Parse tree illustration 60 Tab. 7.1 and 7.2: Edge lists for Q1 and Q2 161

Fig. 3.2: Query tokenisation example 61 Fig. 7.3: Adjacency cube for query 1 161

 Fig. 7.4: Adjacency cube for query 2 161

Chapter 4 Fig. 7.5: Resulting adjacency cube C3 162

Tab. 4.1: Final codification of the survey results 76 Fig. 7.6: Similar’y scor’g & query mapper 163

Fig. 4.2: Survey outcomes as a thematic map 77 Alg. 7.7: The similarity scoring algorithm 164

Tab. 4.3: Mapping i'view questions to themes 80 Tab. 7.8: Query cache table design 165

Fig. 4.4: Frequency breakdown of survey topics 81 Fig. 7.9: The KNN classifier concept 166

Fig. 4.5: Execution plan for the ORM query 88 Alg. 7.10: Looping …the query cache 166

Fig. 4.6: Execution plan for the non-ORM query 89 Alg. 7.11: Finding similar queries 167

Fig. 4.7: Execution plan … ORM search query 91 Tab. 7.12: Query stack table design 168

Fig. 4.8: Execution plan for the non-ORM query 92 Alg. 7.13: Asynch’s weight adjustment 168

Tab. 4.9: Performance statistics for Contoso 93 Alg. 7.14: Adjusting the value of K 169

Tab. 4.10: Measures / compare effic’y of queries 96 Tab. 7.15: Chicago Public Safety data set 172

Tab. 4.11: Results from query perf. testing 98 Fig. 7.16: Chicago data split/sub-schemas 174

Fig. 4.12: Total Score by Evaluation Criterion 100 Fig. 7.17: Chicago data table cardinalities 175

Fig. 4.13: Total Score by Query Objective 101 Fig. 7.18: Output-random SQL generator 177

Fig. 4.14: Correlation bet’n complexity and time 102 Tab. 7.19: Results from scoring testing 179

Tab. 4.15: p-values / t-testing execution times 102 Tab. 7.20: Failed query mappings 180

 Tab. 7.21: Test descriptions 183

Chapter 5 Figs. 7.22(a), 7.22(b): Processing metrics 184

Fig. 5.1: The query execution lifecycle 106 Fig. 7.23: Cost savings / query/ schema 185

Fig. 5.2: Overview of PETAS 108 Figs. 7.24(a), 7.24(b): Distr’n, correlation 187

Fig. 5.3: The alt. query representation process 109

Fig. 5.4: Example SQL query / ERD diagram 114 Chapter 8

Fig. 5.5: Distinct query compn’t list (key-value) 115 Fig. 8.1: Overview of dynamic schemas 190

Fig. 5.6(a,b): Adjacency matrix and graph 116 Fig. 8.2: DFD for dynamic schema process 190

Fig. 5.7: Query tokenisation flowchart 117 Fig. 8.3: ERD for dynamic schema tables 192

Fig. 5.8: Directed graph representations 121 Tab. 8.4: Query parser summary metrics 199

Fig. 5.9: Calculating Hamming distances 122 Tab. 8.5: Analyse MVs s’ry metrics I 200

Fig. 5.10: Calculating the adjacency cubes 123 Tab. 8.6: Analyse MVs s’ry metrics II 200

Fig. 5.11(a-c): K in one/two/three dimensions 125 Tab. 8.7: All phases – summary metrics 200

Tab. 5.12: Calculating traversal cost 133 Fig. 8.8: Cost deltas / all queries, all runs 201

Tab. 5.13: Relative index seek efficiency 134 Tab. 8.9: Metrics for … cost delta measure 201

 Fig. 8.10: Cost deltas - new q’ry cost lower 202

Chapter 6 Tab. 8.11: Metrics … cost delta measure 202

Fig. 6.1: Overview of PETAS – matrix parser 138 Tab. 8.12: Metrics for proc. queries 203

Fig. 6.2: Visualising a query in 3 dimensions 139 Tab. 8.13: Metrics for filtered queries 203

Tab. 6.3: Example node relationship list 140 Tab. 8.14: Storage required by new MVs 204

Tab. 6.4: 2-dimensional adjacency matrix 141

Fig. 6.5: Attribute type on the Z-axis 141 Chapter 9

Fig. 6.6: 3D adjacency cube in 2 dimensions 143 No figures.

Alg. 6.7: Extracting projection elements 144

Alg. 6.8: Extracting membership elements 145 + Appendices A-E (various)

Alg. 6.9: Extracting predicate elements 146

- 8 -

Chapter 1: Research Introduction

1.1 Introduction

Relational Database Management Systems (henceforth RDBMSs) manage storage and access to

data using the relational model, accessible through Structured Query Language (SQL) both directly

by users and automatically via application calls. Such systems underpin a large majority of the

everyday IT systems used across the world [1], from physical barrier controls to e-commerce

websites, stock market systems and social media. At over half a century old [2], the relational

model has stood the test of time and has spawned a diverse range of powerful toolsets espoused by

keystone software suppliers; Microsoft, Oracle and IBM all have contemporary flagship RDBMS

products [3, 4, 5] that have a rich history, with more recent inroads made with ‘Database-as-a-

Service’ (DaaS) products from Amazon and developments in both native and DaaS RDBMS

platforms from the open-source community. However, the relational model does not cater for every

usage scenario, and several classes of performance issues are endemic to the model, as evidenced

throughout the academic literature [6, 7] and through observations and improvements suggested by

the technical practitioner community [8, 9].

Chapters 2 and 3 explore the literature and show primary research conducted to replicate some

well-known database query performance anti-patterns, particularly those investigated by Ireland et

al. [6] and Karwin [10]. Many of these issues remain current and merit further research,

particularly in the efficiency of query parsing, caching and binding. The principal research

contributions explore these issues, replicating and exploring poor performance characteristics in an

experimental setting, and present a novel, multi-faceted solution framework that represents

advances in both the information theory underpinning the representation of relational queries and

the pragmatic delivery of a new methodology for query handling within the RDBMS query engine.

This research aims to both showcase the theoretical development of the novel ideas that underpin

this methodology and demonstrate how the framework can be implemented within an RDBMS.

1.2 Research M otivation

The role of information has undergone a radical transformation since the inception of the database

model in 1970, both in the context of technological development of information systems and as part

of wider cultural changes in the way that information is produced, stored, and consumed. The

development of web applications, the advent of social media and the increase in development and

proliferation of online appliances (known colloquially as the ‘Internet of Things’[11]) in a variety of

- 9 -

contexts, such as enabling so-called ‘smart cities’ [12] or powering developments in healthcare [13,

14], together with sustained improvements in computational capability, have resulted in what has

been described variously as a ‘data deluge’[15]; the ‘information revolution’ [16] and the ‘global

information age’ [17]. However, as data is generated, it must be stored, and must then be kept

confidential; the integrity of the data must be preserved; and it must be available, ready to be

accessed. This CIA triad forms the core tasks of the RDBMS. Ensuring these challenges are met is

increasingly difficult in a rapidly changing world where the use and generation of data is

continually growing.

Traditionally, the RDBMS has been used to store such data and provide this ‘CIA guarantee’, on

the premise that the data is structurally repeatable, that it conforms to a formal data schema.

This remains the case for a great deal of enterprise data; of the top 10 databases in the world,

ranked by popularity, 7 are relational platforms [1]. It is notable that one of the world’s most

popular social networks is constructed on a relational database product and in 2011 was handling

over 60 million SQL queries per second [8]. While there are valid use cases for non-relational

database systems, such as the management of unstructured or semi-structured data, it is arguable

that the widespread implementation of RDBMSs in diverse contexts means relational database

performance remains a current concern and NoSQL solutions, while suitable for some purposes,

cannot provide a superior fit between the underpinnings of set-theoretic relational algebra and

implementations of the same than the relational model paradigm.

Database schemas are noted for their invariability [18]. Having been conceived and the standards

developed from 1970 onwards [2][19][20], it is symptomatic of the static nature of computer

programming at the time that the relational model was designed to integrate with fixed application

models. However, technical and cultural patterns in modern application development are designed

with adaptability in mind, a major milestone of which was the publication of the ‘Agile Manifesto’

[21] in 2001 and led to a shift away from application development methodologies that had ‘Big

Design Up Front’ (BDUF) principles embedded. This included to some extent the relational model,

built to interface with these kinds of systems, and solutions optimised for semi-structured data built

on the BASE rather than the ACID principles became popular [22, 23]. As such, both technical

and cultural splits developed between the new object-oriented, adaptable application development

approaches and the static relational model. One artefact of this technical split is known as the

object-relational impedance mismatch problem [6, 24], necessitating the use of object-relational

mapping (ORM) tools to reconcile class objects to sets, while the cultural split has resulted in

various speculations across social, news and academic media [7, 25] about the role of relational

databases in future applications and helped fuel the rise of alternative database platforms that

- 10 -

support unstructured and semi-structured data.

With this context described, the motivation for this research is to help solve, or at least mitigate,

some of these mismatch and subsequent performance issues by introducing dynamism – defined here

as the ability for a RDBMS to respond favourably to a constantly-changing environment - into the

relational model, as agility was introduced into software development practices. To do so, this

research focuses on novel theoretical developments and demonstrable practical methods which

enable the database to respond to ever-changing input queries to provide a superior data retrieval

service which is better placed to serve the management of ever-increasing volumes of data.

1.4 Research Questions, Aims and Objectives

This section lists the broad research questions and the central aims of this research project; and

details several objectives that support the aims and look to answer the research questions. These

are revisited in Chapter 11, where the findings are compared against the stated questions, aims and

objectives, and the success (or otherwise) of the project is evaluated.

1.4.1 Research questions

a. As the demands of data processing have evolved from closed systems with known data

structures driven by fixed schemas to open, unstructured systems driven by the

applications, what disadvantages can be identified with the current object-relational

database model given this evolution, and how can these be overcome?

b. Can a new theory for query representation be developed as an alternative to representing

queries as semantic objects? Is there an accompanying viable practical approach to

implementing this new theory to overcome the disadvantages of storing and caching queries

as non-comparable semantic objects, and can this be used to improve the parsing and pre-

optimisation stages of the query optimiser?

c. Can other approaches from alternative computational disciplines, such as machine learning,

be applied to extend the current object-relational database storage and management

methodologies, creating a responsive model that learns from system inputs to optimise

system outputs?

d. Can schema representation and usage in RDBMS systems be adjusted to incorporate more

of the theoretical capabilities of axiomatic set theory, particularly the Zermelo-Fraenkel

- 11 -

axiom of the schema of separation? Does such an approach work theoretically for query

binding, and can such an approach be implemented in practice?

1.4.2 Research aims

a. To research the effects of object-relational impedance mismatch and associated factors,

such as the impacts of big data that affect relational database query optimisation

performance, engaging with the industry practitioner community to research the real-life

performance consequences of queries generated from non-traditional sources, including

ORM frameworks, upon relational databases.

b. To identify and develop a novel solution to any adverse performance issues arising from

these consequences, testing and validating the solution, and to establish an overarching

design framework based upon this solution, detailed at both the theoretical and

implementational level, to form the foundation of future work in developing the theoretical

bases of this solution further.

The following research objectives are defined to help achieve the aims.

1.4.3 Research objectives

a. To provide a summary review of the key technical concepts for the topics of this research,

and to conduct a topical critical literature review of performance optimisation literature in

the relational field together with related topics.

b. That the literature review in (a) encompasses the evolution of data in information systems;

how data has been stored, categorised and measured, with emphasis on the trends and

future developments required from data management frameworks to support these

expectations.

c. To investigate and identify weaknesses in current database design and query handling

approaches, with particular emphasis on query representation and schema design.

d. To validate any gaps identified in database performance optimisation research by collecting

and analysing qualitative subjective data from industrial practitioners and from academic

- 12 -

professionals.

e. To identify suitable approaches to developing a conceptual solution to address the

identified weaknesses, generalising this solution into a theoretical framework to augment

current database storage designs, access methods, management processes and structural

conventions, suitable for implementation across platforms.

f. To investigate if alternative computational optimisation tools and approaches, such as

machine learning algorithms, can be used within a solution to the identified performance

optimisation problems; if so, to present such a solution design and implementation.

g. To evaluate the contributions of this research and propose new directions for further work

based on the outcomes that were achieved.

1.4 Research Approach

1.4.1 Research philosophy

The focus of the research is on exploring the methodologies and potential performance benefits of a

new dynamism in database performance optimisation. To conduct this research, it was necessary

to choose a research philosophy which reflected the investigation of untested ideas, and which

would be the most effective in answering the research questions, and which allowed for varying

modes of enquiry with a selection of mixed methods.

To this end, the philosophical stance of the research is based on pragmatism; this is an approach in

which claims to knowledge are made based on actions, situations and consequences [26] rather than

as a result solely of strict post-positivistic scientific enquiry strategies, or interpretivist socially-

oriented approaches, although the philosophy of pragmatism may encompass both of these.

Pragmatism is focused on developing the solutions to problems rather than concentrating on the

methods that are used [27], and as such is suited well to a mixed-methods research strategy.

Peirce, cited in Ormerod [28] is credited as one of the principal proponents of pragmatism, and

defines it as a ‘philosophy of meaning’, with Ormerod further commenting that utilitarianism has a

strong bearing on the meaning of pragmatism. Little mention is made in the literature of

pragmatism about specific strategies of inquiry, and pragmatism as an approach appears to be

- 13 -

suited to research where any suitable strategy of inquiry can be considered valid; a disconnection is

made from an absolute version of the truth, and the interpretation of truth at different points in

time – or, as Melles [29] puts it, ‘… individual action and experience in the world [is] the most

realistic basis for decision-making’.

Our solution, while constructed in such a way as to be platform-independent, and with theoretical,

set-theoretic and scientific design underpinnings, may be used in the future as a basis for

implementation of the ideas within in existing or new RDBMS systems. Finding and testing these

ideas using a pragmatic, ‘what works’ approach may then be superior to other research philosophies

– for example, the interpretivist approaches associated with social sciences [30, 31], where opinion

and narrative are given greater prominence than quantitative empirical testing, may be of limited

use when deciding which design approaches provide the most quantitative utility.

Misak [32] argues that under the pragmatic model, beliefs are true for an individual, and the

definition of truth is variable according to what ‘needs’ to be believed at the time. This is similar

to the importance placed on individuals ‘lived’ experiences in other disciplines. ‘Individual’ could

be extended to ‘system’, and this viewpoint can be useful: if this research were to make

suppositions, or hypotheses based not just on logical empiricism but based on the humanistic

outputs, or relative truths, of the qualitative research, then a richer and more flexible version of the

solution might emerge. To illustrate this point, historical research into schema scalability strategies

resulted in the concept of normalisation ([33][34]). This is a form of logical empiricism, where the

concept can be proved mathematically, and the benefits tested scientifically. Schema normalisation

was suited to environments where the variety and structure of information queries was a known

quantity (the ‘absolute truth’) but failed to recognise two important factors – the performance

costs associated with a decentralised schema [9], and the human difficulty in, for example,

identifying functional dependencies that are associated with designing such schemas – Lee [35]

noted that ‘...the determination of appropriate normal forms frustrates many systems analysts.’

This discord is evident in the design choices of several current enterprise software packages and has

been reflected in comments from our interview participants.

Arguably then, the mathematical and scientific rigour of the normalisation model fell afoul of the

dynamic and flexible environmental contexts in which these normalised schemas were to be used,

evidenced by the increasing variety of alternative structural approaches [22, 23] to relational

databases emerging today.

Floridi [36] defines ‘pragmatic information’ as how much information is carried from informer to

recipient, in a specific ‘belief state’, in a specific operational environment. This could be a

- 14 -

considered a comparative philosophical definition of an information system based on interactions

(or transactions) such as an RDBMS; a pragmatic approach to the research, then, recognising that

truth depends so much on the context of the application and the priorities of the participants (both

human and machine), would appear to be an appropriate research philosophy to investigate a

pragmatic information system.

1.4.2 M ethodological choice

With a mixed-methods approach underpinned by a pragmatic research philosophy, Creswell and

Plano Clark [37] argue that the use of both qualitative and quantitative approaches used together

in the correct fashion can yield a stronger study than either alone. The mixed-methods approach

allows for the human outputs of conversations brought from open-ended interviews to be combined

with quantifiable survey outputs from a population of database professionals to identify the

primary database performance difficulties experienced in the field; these insights can be used as

inputs to the literature review, which can then yield, through an iterative, inductive reasoned

approach of triangulation, in a detailed description of advances in the various academic disciplines

which contribute to the design (for example database performance tuning; functional dependency

identification; sort-merge algorithms; machine learning techniques, for automatic query

classification and so on). Further, in designing and testing the functions which comprise the

elements of our solution (such as dynamic schema redefinition), the mixed-methods approach allows

for the integration of formalised quantitative testing techniques to validate the outcomes [38].

Moving from the outside to the inside of the Saunders’ et al ‘research onion’ [39], the following

paths, shown in Fig. 1, have been identified to classify the chosen research approaches, each

marked with a black rounded rectangle.

- 15 -

Fig. 1.1: The ‘Research Onion’, adapted from Saunders et al. (2008) [39],

with annotations (copyright as shown).

An inductive approach has been chosen for this research. Inductive approaches focus on drawing

out the general theory from singular examples, whereas deductive approaches draw singular

examples from the general theory. An approach loosely modelled on Glaserian grounded theory is

used for the literature review and according to Lapan [40], it is an inductive reasoning method that

fits well with qualitative research. Within grounded theory, the Glaserian approach [41] is held to

be the most inductive, with the focus being on the integration of findings and letting theory emerge

from the data. This also applies to the quantitative testing; where a theory can be tested, it is the

singular hypotheses that are confirmed or otherwise by individual experiments that will shape the

outcome (i.e., the success or failure of the aspect of the solution under test).

Referring again to Saunders [39], both experiments and surveys have been highlighted, although

interviews are also used, and a cross-sectional approach taken – this is to say that research is on

the specific, rather than the general case, due to the breadth of the relational model and the range

- 16 -

of testing that could be carried out, once again fitting with an inductive methodology.

Creswell describes six mixed-method design strategies – the ‘sequential exploratory’; the ‘sequential

explanatory’; the ‘sequential transformative’; ‘concurrent triangulation’; ‘concurrent nested’ and

‘concurrent transformative’ [37]. The category which best describes this research is the sequential

exploratory, where qualitative data collection is completed first followed by quantitative experiment

design and data collection to explore an idea.

Finally, the epistemological perspectives are both subjective (for the qualitative research) and

objective (for the quantitative research), although it must be noted that a certain rigour is present

in the literature review research method that is drawn from an objective, semi-formal design, as

detailed in the next section.

1.4.3 Research plan

The research plan is structured as shown in Fig. 1.2.

The plan is split into three phases. Phase 1 focuses on project planning, carrying out secondary

research and planning and executing the initial qualitative research and problem validation. Phase

2 looks to define the solution from the outcomes of Phase 1 and in doing so, follows a loose iterative

software development methodology, insofar as this can apply to a single participant. The

functionality is designed and documented, and in Phase 3, experimental testing and validation

takes place, including external validation with academic and industry experts.

Initially, the plan began by researching terms at the highest level of abstraction given the problem

domain; database performance optimisation research, with an emphasis on recent developments,

with seed terms informed by the author’s industry background. An approach based on Glaserian

grounded theory was then used to search the literature, analyse the findings and extrapolate further

areas of potential research, by working from general topics, noting the subtopics and findings that

emerged and recursively searching and aggregating sources and findings based on the results.

Grounded theory is normally used in social sciences, but is a suitable research method when

analysing large, unstructured data inputs such as published literature to find insights regardless of

specialty. Grounded theory is a technique for methodologically determining linkages between

different data sources, categorising and dissecting the data to find new categorisations and research

leads through codification of concepts and comparative analysis. As an inductive reasoning method

[40, 41], it fits with the general qualitative research philosophy outlined. To use it effectively,

- 17 -

starting with a general research concept such as database performance optimisation without looking

to answer specific questions means the domain remains broad and new insights can emerge. Once a

broad and deep study has been conducted, and findings codified with memos outlining key ideas,

these can be brought together to form clear conclusions and bring forth theory – for this research,

these are indications on which optimisation methods have been popular or successful, and more

crucially where gaps in performance optimisation theory remain.

Since the literature review is interaction only with published works and not with human

participants, a more objective view can be taken when assessing sources and to this end, a

quantitative evaluation method has been used, making this approach quasi-grounded theory, rather

than a full implementation of the technique.

Database performance optimisation is not the only area which was targeted in the literature review.

Additionally, other topics became apparent, particularly when considering other cross-disciplinary

techniques. The literature review was expanded beyond the initial scope to include related different

topics. In Table 1.3, some potential broad subjects for literature review are related to the research

questions. These were eventually refined into the topics that head each subsection in Chapters 2

and 3.

- 18 -

Fig. 1.2: Three-Phase Research Plan

- 19 -

Other approaches were possible for the literature review. One of the criticisms noted [42] is that

some vital topics to that study are excluded as they are separate from the interconnected streams

of topics identified through grounded theory, and it was necessary to add more ‘seed topics’ (see

diagram above) to establish a broad view. Additionally, with increased review into secondary and

tertiary references, the scope of material necessarily extended backwards in time, meaning topics

quickly became outdated or irrelevant to the primary study.

Table 1.3: A sample of topics related to Research Questions A through D

Research Question Topics

a, b, c, d Database performance optimisation.

A

Data evolution; data culture; big data; unstructured data; Agile;

object-oriented programming; Internet of Things; application

design methodologies; data warehousing; distributed data.

b, d

Graph theory; multi-dimensional information representation;

Hilbert spaces; matrix theory; linear algebra; machine learning

techniques; code refactoring; learning algorithms; artificial

intelligence.

C

Measuring data; 3 ‘V’s; domains; statistical modelling; planes /

complex planes; data classification; pattern matching; data

aggregation; data types.

Examining current research only helps avoid the latter point, but also excludes certain vital

necessities – such, as in this case, vital work on set-theoretic constructs, like domains [43]. Fig. 1.4

illustrates the approach used to discover, assess, analyse, codify and extract meaning from research

literature using the grounded theory approach.

- 20 -

Fig. 1.4: The grounded theory-based approach to literature review

1.4.4 Primary qualitative research strategy

One purpose of the secondary research is to discover the limitations and weaknesses in current

database optimisation research, implementation methods and best practices. While a significant

amount was discovered from examining sources such as academic journals and technical

documentation, much of the knowledge pertaining to efficient database performance tuning

practices is latent and highly dependent on factors such as environment, experience of the

professional, corporate policies, personality, role, software version and business context.

For this reason, making assumptions about the limitations of performance optimisation would be

best augmented by consulting established professionals to gather more detail on alternative

viewpoints to the problem which will help to establish the scope and priorities for the solution.

This is an example of the mixed-methods approach to the research, where using interpretivism (as

part of a pragmatic approach) alongside a more structured quantified positivist style can result in a

survey where answers can both be counted and interpreted to form conclusions.

The surveys took the form of a mixture of multiple-choice questions, and open survey questions.

The target audience for the first survey were professionals engaged in active positions requiring

interaction with database management systems. These included developers, database

administrators, analysts, academics, IT managers, application support specialists, architects and so

- 21 -

on. Due to the delivery medium (online, group targeting) it was not possible to strictly filter out

other professions; however, the distribution of the survey was targeted to those communities most

likely to have members engaged in these professions and their primary occupations were captured

in the survey, so that non-qualifying participants can be excluded in analysis.

As this is an inductive method, no prior hypotheses are assumed. To facilitate this, the questions

were designed to be balanced and without lead or bias. The first survey was split into three

sections –

• The profiling section, where the respondents were invited to provide some background

information. Personally-sensitive information such as gender or race were irrelevant for the

survey analysis and so do not need to be recorded, but data points such as number of years

of experience and job role were captured here. These responses also qualified the

respondents to answer the main questions. Given the desired target audience of regular

database users, developers, administrators etc., an early exit point was built into the design

in case respondents do not have sufficient regular experience to assure the desired

competency and experience in the field.

• The next section was focused on the processes, procedures, tools and frameworks that the

respondents were currently or recently using. This formed a snapshot of their current

opinions and methodologies and these questions were designed to provide information to

help answer the first research question.

• The final section, where questions were focused on potential improvements that the

respondents have planned or would like to see. This section looked at what is possible in

the area, and what changes the respondents would make. The outputs of these questions

helped inform the design outcomes specified by the remaining research questions.

To build upon the outcomes of the questionnaire, three semi-structured interviews with leading

database professionals were undertaken to collect opinions on both the current performance tuning

challenges and future directions for database performance research and implementations. These

interviews produced insights which complemented the outcomes of the literature review and

survey(s) to determine the best possible design paradigms, and these outcomes are presented in

Chapter 4.

In keeping with the inductive reasoning approach, these interviews were narrative, in-depth

interviews conducted on loose lines of enquiry. Taylor et al [44] note that this style of interview is,

- 22 -

‘… modelled after a conversation between equals rather than a formal question-and-answer

exchange.’ This is a style where rapport is established between the participants and non-directed

conversation occurs to bring out opinions and other data for later analysis.

Interview audio was recorded in full and transcribed for analysis. Information analysis was

conducted through extraction of opinions and ideas expressed by the interviewees using first-pass

sentiment analysis with the software package NVivo and analysis and final codification by hand of

the findings, and the categorisation of these, alongside the survey output, into short conclusions

and directives that later informed the solution.

1.4.5 Primary quantitative research strategy

The research strategy first focused on establishing the scope of the problem in the field of database

query representation, parsing and re-use strategies, doing so using secondary research in the form of

literature review and primary research through problem validation with industry professionals and

academic experts.

Beyond this initial strategy, the research branched into the quantitative – establishing a base

design constructed from our findings and establishing an initial proof-of-concept. This proof-of-

concept was designed to test several of the key tenets of any potential solution for feasibility, and

to help answer research objectives (e) and (f), before proceeding to develop a full theoretical and

practical solution:

It was established through the qualitative research that a new approach was needed to address the

following findings; this informed our initial high-level solution design using a top-down design

approach in a spiral methodology based on the following findings from the qualitative research:

• That external application usage patterns have changed, particularly with the advent of

ORMs, resulting in changes to query patterns that are not well served by the static nature

of current query parsing and recaching methodologies in RDBMS systems.

• That a more efficient approach is desirable that improves query re-use and overcomes

caching issues.

- 23 -

• That there is an opportunity to use certain elements of set theory to introduce dynamic

schema creation and selection into RDBMS platforms as an additional strategy to help

address poor query handling.

An initial sample data set from the public domain was then identified that could be split into sub-

schemas; SQL queries to address this data set were created; and an initial implementation for the

query representation and schema selection elements of our high-level design was created, drafting

these both in theory and implementing in practice, using PostgreSQL as the RDBMS and Python

2.7 for the new feature code. Test harnesses were built and several hundred tests executed, with

the results recorded for later quantitative analysis.

The following methodological choices were made:

• Staged, modularised development using a spiral methodology was chosen as the most apt

approach to the solution under investigation. In this methodology, requirements gathering,

design, implementation, testing and deployment are arranged in concentric spirals with

each journey around the spiral encompassing more requirements and consequent features in

the final artefact. This methodology can be managed by a single researcher and any

definition of ‘done’ can be defined, however it has the disadvantage that the single

researcher will by necessity need to fulfil all roles in the spiral.

Fig. 1.5 illustrates the original concept of the spiral software development methodology as

developed by Boehm [45]. Although some phases such as risk analysis are not relevant to this

investigation, the overall concept of moving between 4 key phases and developing an increasingly

complex artefact based on frequent review remains.

- 24 -

Fig. 1.5: The original spiral methodology, reproduced from Boehm, 1988 [45, pp.64].

The following methodologies were considered and rejected:

o Waterfall (BDUF) methodology: Since the aim is to establish the feasibility,

through design and experimentation, of a pragmatic solution to the research

problem, a waterfall methodology would provide too much rigidity between

requirements gathering, solution architecture, implementation and testing. Since

trial and error is required, an iterative approach is more appropriate.

o Agile methodology: This methodology is better suited to teams where the goals

can be split into a series of tasks, grouped into sprints and allocated to individuals

or small teams. Each task is tangible and has a clearly defined definition of ‘done’.

This methodology was rejected (and variants of it, including XP and Scrum) as

over-engineered for the purposes of a project involving a single author.

o V-model methodology: This model relies on the pairing of planning and

development tasks with testing and deployment tasks in a series of roundabout

interactions to ensure that requirements are validated before design proceeds; that

design is verified before implementation proceeds; that implementation is tested

before deployment proceeds. This model relies on some division between the

- 25 -

development and the testing; some pre-determined knowledge of the eventual

design, in the style of waterfall, is required, and this approach often involves

multiple teams. This approach was rejected in favour of the spiral methodology

which enables iterative solution development without fixed definitions of the final

artefacts.

The test harnesses, test definition and execution of the initial proof-of-concept was conducted using

a mixture of quantitative approaches. For the initial proof-of-concept, the scientific method was

used, with hypotheses defined and outcomes compared against the hypotheses. For later

development and testing, a more exploratory approach was used, with goals defined for the

functional units of software and tests defined to establish whether the goals have been met; a

commonplace approach in software development. A range of statistical methods have been used to

establish success, including a standard range of statistical aggregates, analysis of p-values using T-

tests where necessary; formalisation of the theory underpinning the solutions as algebraic

expressions, using both set theoretic notation and the relational algebra; and discovery and display

of our results using a range of graphs and visual metrics.

1.5 Ethical Issues

Some constraints were in place for the interviews. Many professionals in the field are based in the

countries in which the main platform providers primarily operate; thus, the interviews were

conducted via video conferencing technology for reasons of economy. This was convenient, but to a

certain degree removed some of the interpersonal rapport between the interviewer and interviewee

that may otherwise have elicited more detailed, honest and comprehensive responses.

Aside from ordinary ethical precautions associated with conducting interviews and data handling

requirements dictated by the Data Protection Act (2018) and latterly the replacement General

Data Protection Regulations (GDPR) when dealing with personal information, there are no other

ethical concerns related to this research. All third-party respondents are non-vulnerable adults

participating voluntarily and knowingly in activities that are solely verbal or electronically

interactive, dealing with non-sensitive topics.

Proportional ethical approval for both the survey(s) and interviews in the formats described was

obtained from the Principal Supervisor and the Faculty of Computing, Engineering and Sciences

Research Ethics Committee on 24 March 2017.

- 26 -

1.6 Thesis Structure

This chapter has provided an introduction to the research and specified the research questions,

aims, and objectives; outlined the contribution to knowledge, and shown which research

philosophies, approaches and tools were used to carry out our investigations. Research outcomes

and ethical considerations have also been discussed.

RDBMSs and the relational model more generally have a long and detailed history. Chapter 2

(Background) describes the theoretical underpinnings by discussing previous contributions to this

history from many of the seminal authors and practitioners in the field. Several of the issues in

relational theory and practice are defined and linked to some central causes - the increase in the

volume, variety, and velocity of data at scale; the emergence of Object-Relational Mapping (ORM)

frameworks, their associated performance anti-patterns and the extent to which ORMs have been

embedded into software development and release architectures, and a discussion on their

contemporary applications.

Chapter 3 (Literature Review) presents a selected topical literature review; these topics include

the challenges presented by ORM platforms; relational query performance optimisation; the effects

of the 3 ‘V’s of big data; and advances in alternative query representation forms. Object-relational

impedance mismatch is described and defined in detail and compared to prior literature which has

aimed to solve or mitigate the resultant practical issues. This section also examines the difficulties

in performance tuning queries posed by over- and under-normalisation of schema architecture and

presents some of the extensive literature in this area.

In Chapter 4 (Problem Investigation), these issues are specified more clearly, addressing their

scope and applicability to the aims, and this section presents our primary qualitative research, a

series of surveys conducted both on an individual level through expert interviews and through

engagement with the wider technical community in the form of a tailored and targeted

questionnaire. The findings are augmented with references to the findings of the published papers

that emerged from this research, which focus on the issues created by ORM products in RDBMS

engines and include practical demonstrations of these shortcomings in both theory and practice,

using current enterprise tooling. Two separate real-world datasets and two different RDBMS

platforms are used.

- 27 -

In Chapter 5 (Solution Design), having established the background and current state of the

literature in Chapters 2 and 3, and establishing the depth and scope of the problems in Chapter 4,

an overarching solution is defined. This solution, termed PETAS (PErformance Tuning with

Adaptive Schemas), is comprised of several elements, each element working together to provide an

alternative methodology for query handling, caching and execution. This section expands upon a

key deficiency in the very kernel of the RDBMS engine, particularly in how SQL queries are parsed,

cached and optimised – a deficiency which is common across RDBMSs. This section presents an

argument showing how this fault stems from an internal query representation problem and proposes

a new method for internal query representation, the multidimensional adjacency matrix. It is also

shown how queries can be compared and ranked by using this matrix method combined with

Hamming distances and the use of a statistical technique (k-nearest-neighbour) more commonly

associated with machine learning.

Chapter 6 (Testing: Query Representation) is a deconstruction of the first element of

PETAS, the novel query representation in graphical form using multi-dimensional adjacency

matrices. Continuing from the solution description in Chapter 5, a brief introduction is provided

and an implementation of this component is presented. This section details the experimental testing

details the research outcomes. The applicability of this approach to RDBMS systems in general is

discussed.

Chapter 7 (Testing: Schema Selection) extends the description of the schema selection

mechanism from Chapter 5, which makes use of some simple machine learning algorithms to

classify inbound queries as belonging to certain pre-defined schemata. A working k-nearest

neighbour implementation is demonstrated and tested alongside the query parser. This section

provides evidence of a working implementation and documents the results.

Chapter 8 (Testing: Dynamic Schema Redefinition) describes the third innovation of

PETAS, the dynamic schema redefinition mechanism, which leverages the principles of axiomatic

set theory to allow RDBMS systems to maintain multiple, parallel schemata which are simple

transformations, translations and subsets of a base schema. Leading off from the definition of this

component in Chapter 5 and in particular the novel definition of query efficiency, it is shown how

this feature can be used independently to provide both tangibly faster query execution for a variety

of query types. This section provides evidence of a working implementation using materialised

views as substitutes for alternative table metadata definitions and indicates how this can be used

alongside the query parser and selection mechanism.

- 28 -

Chapter 9 (Conclusions, Reflections and Future Work), summarises the overall validation,

testing and results of the experimentation on each component of PETAS. This chapter brings

together the previous qualitative work with domain experts, the quantitative testing carried out

using empirical methods, and the testing of each component as described in Chapters 6, 7 and 8.

The outcomes of testing our PETAS implementations are demonstrated, integration testing is

discussed, and the strengths and weaknesses of our testing methodology and overall solution are

considered. This section brings together all the strands of the research and presents the

conclusions, revisiting the aims and objectives, considering the novel contribution to research and

summarising areas for future research that can develop these ideas further.

The Appendices, containing supplementary material as directed throughout this document are

included at the rear.

1.7 Novel Contributions to Knowledge

The novel contributions to knowledge that this research provides are summarised as follows:

- The research and production of a novel query representation technique to store database

queries as multidimensional adjacency matrices – directed graphs in an array form.

- The research and production of a novel algorithm for similarity scoring, using existing

techniques but applied to multidimensional adjacency matrices in such a way as to

effectively compare the structure of any two matrices and produce a normalised linear

output.

- The research and production of a schema mapper component which can effectively assess

inbound queries, adjust internal weights and rank-order queries by relative accuracy in

predicting performant sub-schemas.

- The production of a method for subset schema generation through dynamic schema

redefinition – while this element in particular is based upon existing methods such as

materialised views, and similar ideas have been explored before [6], this method is novel in

the interface with the schema mapper, the definition of a new efficiency metric and the

definition of a view variant which accesses data pages directly without reference to a base

schema, a deviation from the traditional view.

- 29 -

- The publication of three conference papers and a journal paper which detail the problem

investigation and the different components of PETAS.

1.8 Chapter Summary

This chapter introduced the research project, stated the project motivation, and made the case for

the importance of investigating the effects and solutions to the impact of object-relational

impedance mismatch upon relational database management query optimisers. The chapter

specified the research questions, aims and objectives, and commented upon the novel contributions

to knowledge, narrowing down two key deliverables. The research approach was identified and,

using Saunders, the paradigms, approaches and techniques were chosen. This section also

presented the three-phase research plan and detailed the selected approaches to the qualitative and

quantitative aspects of the research methods for both the primary and secondary aspects of the

research outcomes. Finally, ethical issues were summarised.

Chapter 2 provides a comprehensive overview of the problem background incorporating a

summative literature review, expanded into a topical in-depth literature review in Chapter 3.

- 30 -

Chapter 2: Background

2.1 Introduction

This chapter discusses the fundamental ideas intrinsic to the remainder of this research and defines

the key terms, providing a summary literature review on query performance concerns in relational

database systems. The Relational Database Management System (RDBMS) is defined and

explored; this chapter elaborates the definition of a database query, the underlying data structures

are characterised, and the accompanying Structured Query Language (SQL) used in RDBMSs is

described. The RDBMS and the SQL language are linked by outlining the query optimisation and

execution process inherent in RDBMS systems, and the life of a query from inception to completion

is illustrated in Section 2.4. Some issues around query performance tuning are examined,

particularly with reference to the difficulties of tuning a query and the accompanying effects this

may have on application dependencies; some other strategies for schema-driven performance tuning

are also described. Finally, the summary brings together the key points from this chapter.

2.2 Relational Database M anagement Systems

2.2.1 Overview

Data is all-pervasive, and intrinsic to almost every interaction one has with the world.

Increasingly, people are choosing to measure, store and interact with data through, for example,

consumer home automation devices, and self-management of fitness and wellbeing with wearable

devices [1]. As society takes an increasingly interactive role with Internet-connected machines, the

data that these devices generate must be stored safely, securely, consistently and must be available

when needed. In this sense, and like the traditional data collated and held by organisations,

improving the ability to optimise and improve the performance of relational database queries across

a range of database management systems remains a central issue in computer science [2, 3].

In relational database theory, a schema is a collection of database objects, primarily but not only

tables, with each table being a collection of data points organised into columns and rows [4, 5, 6].

Such an arrangement is designed on the principles of relational algebra from axiomatic set theory

[7], and tables are described as relations, although there are differing opinions on this definition [8].

Database queries are used to access this relational data through a relational database management

system (RDBMS) interface.

- 31 -

Databases may have multiple schemas, and each schema represents a collection of tables or

relations which correspond to one single physical arrangement of data in the storage layer [9]. By

physical arrangement, it is meant that the data itself is arranged into a structure, typically a series

of pages. Each page is a fixed size, and the data is stored within these pages in an ordered manner,

with each page having a physical address in the storage layer, with collections of pages

supplemented by metadata, such as index pages, describing their structure [10]. It follows that the

table structures and consequently the schema structures as implemented in the RDBMS are

therefore logical constructions since the schema is a logical abstraction of the collection of storage

addresses.

The tables within a schema remain static in contrast to database queries which are flexible in

structure, easily changed, and able to project, join and filter data from a variety of tables to meet

the users’ requirements, bounded only by the confines of the objects present and the query language

dialect in use, both dictated by the tenets of the relational model. The static nature of the

relational schema is arguably a disadvantage in database systems with much flux in the variety and

volume of the data, as noted by Nayak et al. [11] in comparison to the general class of NoSQL

systems which provide a wider range of data models.

The primary language for interacting with relational database systems is Structured Query

Language (SQL). There are several dialects available depending on the implementation of the

RDBMS, but the core operations are defined within a set of standards, the latest iteration of which

is ISO/IEC 9075:2016 [12]. SQL itself is split into several sublanguages, and in RDBMS systems,

the two key divisions are Data Manipulation Language (DML) and Data Definition Language

(DDL). The former is responsible for creation, amendment, and destruction of database objects

(using commands like CREATE TABLE) and the latter is responsible for the aforementioned data-

centric operations (such as INSERT INTO [table]).

Database queries are implementations of the relational algebra, a set-based logical method of

arranging data into domains and sets of related domains, and the methods for operating upon these

sets by projecting, aggregating, matching, and filtering these sets into subsets. Therefore, query

performance tuning – specifically the methodology of presenting queries to RDBMSs in such a form

so that they execute efficiently – is a problem that can be abstracted from query languages to the

relational algebra. Since each database query has a relational algebraic representation, and that

the processing of a query can be described as the application of several algorithms to the query, it

follows that the act of processing a query can be reduced to a description of the application of a set

of logically- or mathematically-described algorithms to a set-theoretic algebraic expression; thus

query processing is generalisable from the specific SQL case to the abstract logical and algebraic

case. This is not always true since SQL extends the relational model; likewise, there are some

operations in the relational model, such as relational division and renaming, which are only

- 32 -

indirectly supported in SQL.

2.2.2 The role of the schema

One well-understood categorisation of data access approaches is the so-called schema-on-write and

schema-on-read separation, where in the former case, the schema, or data structure, is already

known and the data is written into this structure. In the latter case, the data can be unstructured

and the data is simply written as-is, with a schema (if needed) being defined whenever the data is

retrieved [13]. The former case, schema-on-write, underpins the fundamental design of relational

database management systems (RDBMSs) [3]. An RDBMS is designed to store data in predefined

schemata (plural of schema). Unlike static data stores, relational systems have the advantages of

being able to incorporate key set-theoretic ideas, such as the idea of selecting combinations,

intersections or aggregates of different data from the tables on-demand, and being able to select,

filter and arrange the data to suit [4]. Data can also be inserted, updated or deleted according to

set criteria and manipulated en masse. The functional programming language SQL (Structured

Query Language) is a common and widely-implemented method of contructing queries to do this -

queries are sets of these commands [14].

2.2.3 Current issues

Today's RDBMS has other functions alongside data storage and retrieval. It must provide the

capability to store the data in a confidential manner, ensuring integrity, and make the data

available when required. These attributes, also called the C.I.A. (confidentiality, availability and

integrity) principles, have been long understood as core components of information systems [15, 16].

Today's users of database systems also demand other attributes such as high availability, the

ability of the database system to withstand disruptive, availability-affecting events such as power

outages through techniques like redundancy; interoperability, the ability for the database system to

interact seamlessly with other technologies such as object-oriented programming languages and

non-relational data stores [17, 18]; and business intelligence, the capability for the database

platform to integrate and support data visualisation and analysis by end-users.

The divergence from the traditional definitions and limitations of a database characterised by a

plethora of old and new implementations presents issues when trying to maintain standardised

interfaces, as seen by the addition of platform-specific functionality per implementation of the SQL

language. In addition, as Agarwal et al. [19] note, data is resident in many types of platform, not

- 33 -

just the divergence of relational platforms, and integrating this data remains a current and

significant challenge.

Other challenges present themselves. The movement from functional to object-oriented program

development techniques over the last 50 years has led to an increased awareness of object-relational

impedance mismatch, where the object-driven methodologies of application development collide

with the set-driven, functional paradigms of relational data [20], which give rise to new performance

challenges for the RDBMS. The explosion in so-called 'big data', data which is characterised by

high velocity, variety and volume, amongst other 'Vs' [21], can be a test for the scalability of

RDBMS solutions.

2.3 Query Representation and Comparison

2.3.1 The role of the relational algebra

Database queries are enquiries made upon set-based data structures [6, 7]. Queries are the

implementation of a collection of different operations on a data set that can be combined and

modified to produce the required results [5].

The fundamental operation in relational algebra is the projection. This can be defined as some

restriction of a set of tuples (set of related values) and a restriction across a set of attributes in a

domain. Another way of describing this is a subset of any larger set, where the subset consists of

some related values across a equal-or-larger set of possible values, and where each value is a

member of some wider possible range, or domain. This is implemented in SQL as a SELECT

statement. Note that the subset can be the whole set (or more formally, the cardinality of the

subset is equal to the cardinality of the whole set, also known as an improper subset), or simply a

partial subset (a proper subset), or just a single value [7].

Other operations include the join, where a target set is defined as some combination of one or more

disparate sets, also known as a composite relation [22]. For example, an inner join, or in set

parlance a theta-join or an intersection, can define a target set combining two smaller sets such as

the set of customers and the set of sales. Combining these sets yields advantages in exposing

hidden data, such as selecting (projecting) a result set that includes the amount spent per sale per

customer. Moreover, different types of join such as an outer join (semi-join) can be implemented in

database systems. Notably, the anti-join (a join between two relations R and S where there is no

commonality between the two sets on their join conditions - attribute names) is not implemented in

- 34 -

SQL, and instead is normally achieved through the combination of a semi-join (left join) and

predicates (where clauses). Fig. 2.1 illustrates a composite relation (inner join, or theta-join),

across three tabular relations.

More set-based operations include the insert, update and delete operations [5], and operations that

aggregate information (for example, the sum of sales per customer). RDBMSs are capable of

providing query languages that handle most set-based operations but set-based operations are not

identical to database query languages. Some operations in RDBMSs are not theorised in set

algebra (such as pattern matching with IN and LIKE, although arguably IN can be treated as a

subquery, or in set theory, a composite relation that includes another relational expression, and

LIKE as a string comparison that includes wildcards).

2.3.2 Query representation

Database queries are the implementations of operations in relational algebra, as demonstrated by

many researchers, notably the seminal authors of the language Astrahan et al. [23]; later, Ceri and

Gottlob [25] who built a translator showing how SQL queries can be mapped to relational algebra;

and Date [8, 25] in various publications. However, SQL can also extend relational algebra, enabling

the use of non-relational techniques such as inline functions.

Queries themselves are generated in several ways. The first is manual creation by a developer.

This is where the SQL query is encoded into the application within a method call. Typically, this

approach is used in older applications where the application code is not expected to significantly

change over time. Coding in this manner has some disadvantages - many application development

languages are object-oriented, whereas SQL is a functional language. This presents practical

difficulties when performing operations like passing parameters from a method to a SQL query,

since the query itself is implemented as a text string upon which the parameters must be

substituted in as string literals. The problem of incompatibility between functional SQL and

object-oriented programming paradigms is known as object-relational impedance mismatch. Ireland

et al. [20] identified several layers of mismatch, and the whole topic is discussed more fully

elsewhere (since the unique challenges that arise by using mapping solutions to overcome this

mismatch are a major driver of this research).

Fig. 2.1: Illustration of a theta-join

- 35 -

- 36 -

Other methods of using SQL queries (which are extensible implementations of relational algebraic

expressions) are through stored procedures and functions - pre-written queries accessible within the

RDBMS by calling an associated method name. This approach has advantages such as better

performance through query caching and better alignment with the object-oriented model, but

disadvantages include the overhead of maintaining a separate codebase within the RDBMS and

phenomena such as performance issues that result from execution plans derived from poor

parameterisation [26, 27]. The third, and increasingly common method of generating queries, is

through the automatic generation of SQL that results from an intermediary Object-Relational

Mapping (ORM) tool. These are object-friendly interfaces that map method calls to SQL queries

opaquely, that aim to reduce the impact of object-relational impedance mismatch so that the

application developer writes no SQL but instead calls a method which generates the necessary SQL

for the desired operation. Implementations include Entity Framework and Hibernate. While

ORMs provide advantages such as abstraction and ease of use, disadvantages include the exhibition

of performance anti-patterns [28, 29, 30]. The advantages and disadvantages of ORM tools are

described in further detail in the next chapter.

In terms of internal representation, SQL queries undergo a particular process of parsing, binding or

algebrisation, optimisation and execution. However, an important part of query performance

tuning is the ability for the RDBMS to recognise queries which are similar, or identical, to queries

which it has processed before. Each query that is presented to the optimiser results in an execution

plan for the query, which is a set of tangible algorithmic steps that can be taken by the database

engine to execute the query and return the results. The ability to identify similar queries yields

advantages such as re-use of a previously-generated execution plan [4], lowering the time taken to

process the query, and the ability to cache the intermediary objects such as the parse tree which

reduces the space required for the plan metadata in memory, increasing memory capacity for other

queries.

In some implementations, queries can be prepared. The process of preparing queries means to

identify the parameters within the query and remove them to a separate list of key-value parameter

pairs, to be substituted into the query at run-time. There are advantages to this approach

including query re-use and interoperability with wider data processing platforms such as LINQ [31].

However, this approach is dependent on the implementation of the RDBMS. Queries which are

frequent often refer to objects which have their pages stored in a buffer cache, meaning a large

portion of data retrieval can take place in-memory without reference to the disk subsystem,

significantly reducing I/O costs and reducing the query execution time to the advantage of the user

[32].

- 37 -

Checks for query similarity are limited by nature, because the query execution process by necessity

must be extremely swift and so an excessive level of query pre-processing would impact overall

query execution time. For example, in Microsoft SQL Server, there are basic parameterisation

options (known as 'simple' and 'forced' parameterisation) which can be selected automatically or

overridden by the user [33] which will enable the optimiser to recognise that a query has been

presented before, even if certain parameters of the query are different. However, a query which is

logically identical but syntactically different (even to the point of having only additional whitespace

as the only differentiator) can still be treated as a different query; a major disadvantage for query

performance, reducing the efficiency of the query optimisation process. Overcoming this issue

through the investigation and implementation of a computational method for internal query

representation is a major objective of this research.

2.4 Query Representation and Execution

2.4.2 Query representation and execution

Database queries are semantic structures that use a finite and defined syntax. Whereas data

collections in RDBMSs are organised typically into rows and columns, each field (intersection of a

row and column) containing a data value, and the whole contained in tables, queries are

algorithmic descriptions of operations upon those collections, and have a different structure. In

RDBMSs, this structure must be quantified and turned into a set of executable instructions, and

this is done via a compiler, in the same fashion as high-level languages are compiled (or

interpreted) into a set of machine-readable instructions [4]. Regardless of the implementation

details, the steps for compilation and execution of database queries are generally universal.

Fig. 2.2 illustrates the general query execution process followed by most RDBMSs.

- 38 -

Fig. 2.2: The query execution cycle. Derived from Delaney [40].

First, the query is parsed for correct syntax, and this involves a process of tokenisation - words in

the query are delimited and metadata values (labels, or tokens) assigned to each word. Tokens are

then grouped together and mapped to internal operations in the same manner as language parsing

in natural language processing [34, 35].

Next, the binding (or algebrisation) process associates each token – that is, word or relevant

syntactical symbol - with an operation or database object. The outcome of this stage (depending

on implementation) is the parse tree or the bind tree (these can be distinct, but not always), which

turns the list of tokens into a flow that fully describes the operations and their interdependencies.

This is stored in a tree format which can then be read by the next stage of the query optimisation

process. Parse trees are described more fully in the next chapter.

In the next stage, optimisation of the bind tree takes place to produce an execution plan [36, 37].

The execution plan is a set of instructions for the RDBMS to execute which will produce the result

set specified by the query (or implement the set of operations that the query specified). However,

the steps in the execution plan depend upon various factors. The first factor is the nature of the

data structures which are being queried, and the operations available to read the data. For

example, some RDBMSs differentiate between index seeks and index scans, where seeks look for a

specific range of data by traversing to the partition or segment of the data that contains those

values (much like looking up a name alphabetically in a phone directory) and scans read the whole

table until the appropriate conditions are met i.e. the data is found [38]. Scans are much more

costly than seeks [36] due to the additional I/O and CPU load demands, and consequently can take

longer to execute, to the detriment of the query being run and the user waiting upon the results.

- 39 -

Other factors include whether indexes are defined on the table structures, as depending on the

nature of the query the use of an index instead (an index being either a physical arrangement of

data pages on disk or a secondary structure containing the tabular data in an alternative order) can

have performance benefits [4, 39] as indexes can be specified as trees and tree traversal can be a

highly efficient operation. A third factor is heuristics. Some RDBMSs use these 'rules of thumb' to

make swift decisions about the best execution plan for a particular query, depending on the

structure of the query [36]. An example of this is where the optimiser decides to use an inner loop

join (as opposed to an inner hash or merge join) for two tables as one table has a very low

cardinality (population count) and the loop-based operation would be quicker than the pre-sort

required for the merge or the bucketisation processes involved in hashing. Implementations differ,

and thus execution plans also differ depending on the internal query optimisation algorithms of the

RDBMS. Fig. 2.3 illustrates an execution plan, showing the execution plan for an identical query

on identical table structures on different implementations (Microsoft SQL Server and IBM DB2).

Note how the left-side plan (MS SQL Server) uses a merge JOIN to integrate two sets of pre-sorted

results from the table scans, but the IBM DB2 (right-side plan) optimiser chooses not to pre-sort

but instead uses a hash JOIN, sorting once after the JOIN is executed, illustrating how RDBMSs

can differ in their approach to query optimisation.

Once the execution plan has been produced, the query is executed. This happens through the

RDBMS reading the execution plan in the order specified and executing the instructions. Many

RDBMSs support parallelism, for example the Microsoft SQL Server RDBMS implementation

supports parallelism at the CPU (socket) level, the core level, and the thread level [41]. This

means operations on two 'branches' of the execution plan can be executed simultaneously on

different processor schedulers, or the workload of a single plan component can be split across

multiple system resources (such as CPU cores). An instruction such as 'index scan' may involve

the RDBMS accessing index pages on disk which specify where the data sought can be found (using

page addresses and offsets).

Fig. 2.3: Two execution plans compared

- 40 -

- 41 -

This data is then read by the I/O subsystem in the OS, written to memory (and in some cases, a

secondary temporary data store on disk) and used for the input of the next component in the plan.

Each operation is queued upon the CPU using tasks, workers and threads, the standard access

route in most operating systems (OSs), although this behaviour can be modified using secondary

mechanisms such as affinity masking [41] for multi-core systems, fibre-weight threading and task

prioritisation. The leftmost, or topmost (depending on implementation) component of an execution

plan is typically the root noun of the query - for projections (selections) this is SELECT and at this

point the result set will be rendered to the client. The method for rendering will depend upon the

database driver and the client being used, but typically will be sent as a text stream which the

driver will render into the appropriate structure on the client.

The process above describes the typical journey for a single query. In practice, RDBMSs can and

do cope with workloads that scale to hundreds of thousands of queries per second, and there are

many auxillary mechanisms in place that complement the core query optimisation process, such as

in-memory caching, query plan trivialisation, plan caching and parallelism. The description as

given also omits details of the transaction-based model which guarantees the success (or rollback) of

a transaction and the preservation of ACID principles [42] - a protocol not unlike TCP/IP which

uses a system of acknowledgements to guarantee message reception - and database locking is also

omitted, for clarity.

2.4.3 The role of the cost-based query optimiser

In an RDBMS, queries are implementations of relational algebra that execute to either make

changes to data from storage or retrieve data from storage. These operations are instigated by a

calling application or user. Consequently, to avoid unnecessary delay in the application or to the

user, database queries should be written in the most efficient manner possible. By efficient, it is

meant using the least resources (this can be measured by, for example, CPU, I/O and memory

grants) to return the expected result set in the fastest possible time. To enable this to happen,

RDBMSs can use a variety of approaches, most common of which is cost-based optimisation [43,

44]. This involves several steps – the query is first parsed, which involves syntactic checks and

checks to ensure the referenced objects exist. Next, the query is rendered into an internal canonical

form compatible with relational algebra. Next, the query optimiser generates an execution plan

comprising of various operations to execute the query. This process typically applies heuristic rules

to the algebraic query representation to produce a series of operations in an acyclic tree – for

example, one such rule might be the consolidation and simplification of multiple WHERE

conditions on a single predicate.

- 42 -

Each operation carries a cost – this is typically a function of the CPU and I/O resource cost and

this cost is a floating-point number that is relative, having relevance only when compared to the

cost of other queries. Operations in the tree are executed from the leaf nodes to the root node, and

so the total cost of the execution plan is the sum of all costs of all operations as measured to the

root node [39]. The optimiser will attempt to produce the best possible plan by manipulating the

type and order of these operations within a predefined timeout period – the plan with the lowest

total cost is the one normally executed by the database engine. Therefore, generating efficient

database queries with the lowest possible cost is a core consideration when tuning for performance.

For this reason, tuning the queries is a logical step in dealing with performance issues, with

inefficiencies in poorly-performing query structures removed or rewritten to best match the tables

present within the schema.

This is appropriate not just to generate low-cost execution plans, but because structural changes to

schemas can result in processes dependent on the existing structure being unable to function – for

example, the amalgamation of a set of sub-tables into a single table (denormalization) with the aim

of reducing joins may require changes to all applications which use queries that call data directly

from the original subset of tables [45]. While this limitation to the schema definition can be

overcome by the augmentation of the schema with structures like views or indexes, finding and

mitigating query inefficiencies instead of schema inefficiencies can result in swifter problem

resolution. Such query inefficiencies are also often easier to find, manifested by well-understood

anti-patterns – to name two, queries which use cursors to iterate over data can be outperformed by

set-based representations (colloquially known as ‘RBAR’ [46], or the N+1 problem [30]), and so

targeting cursor- or loop-based structures is beneficial for performance; and queries which fetch

more columns of data than are required for the final result set waste resources and increase query

execution time (a problem known as eager fetching), addressed by limiting the columns selected in

the query.

- 43 -

2.5 Query Optimisation

2.5.1 Overview

Query-centred performance tuning requires the queries to be accessible, which may be through

storage within the application layer or definition within stored procedures, or otherwise subject to

direct manipulation without significant impact to application development. The limitations of

ORM tools [20, 28, 30] include but are not limited to non-parameterisation, meaning almost-

identical queries can fill the RDBMS plan cache and cause unnecessary recompilations; eager

fetching and the N+1 problem; the use of nested queries rather than joins, creating inefficient query

execution plans; and excessively large queries which require more time to produce efficient

execution plans than is available in the optimisation process. These anti-patterns have

ramifications in the eventual execution plan.

Often, tuning efforts in RDBMS systems are directed away from the queries and into the

underlying data structures or infrastructure. Research in this area on an implementation-specific

basis are described by, among others, Chaudhuri et al. [47] for Microsoft SQL Server; Schiefer and

Valentin [48] for IBM DB2; and by Dageville et al. [49] for Oracle Database. There are many

mitigating actions that can be taken to counter poorly-performing queries by rearrangement of the

environment in which they run or the structures that they run against, however queries themselves

can often be rewritten for better performance by arranging them to return identical results but in

an arrangement conducive to the creation of an efficient query plan. For example, using a set-

based approach to querying a set is recognisably better for performance than a cursor-based

approach due to the efficiencies of reducing the number of table- or index scans required against the

underlying data sets. However, with the growing popularity and ubiquitosity of ORM tooling, it is

often necessary to tune the RDBMS for performance despite, or because, of the presence of poorly-

constructed queries, since such ORM-generated queries cannot be readily modified in situ in the

same way that queries pre-defined in stored procedures or through in-line code can be tuned by the

database administrator. These issues are expanded upon in the next chapter.

2.5.2 Normalisation and query performance

Relational databases consist of data which are arranged into columns and rows, held in tables.

Tables can have inter-relationships such as adjacency or dependency (either as a parent or child) on

another table [4]. These tables can be associated using (foreign) keys, where the existence of a row

- 44 -

in one table is dependent on the existence of a related row in another table, as defined by one or

more columns.

Using this simple set of rules, a system of normalisation was initially developed [6]. Called the

normal forms, there are multiple normal form levels, each arranged in an increasingly-strict

hierarchy, which define under what conditions data can be split amongst tables. Third-normal

form, abbreviated to 3NF, is commonly in use however there are also higher forms of normalisation;

4NF, 5NF and BNF, which further restrict the dependencies and transitive dependences allowed in

the database schemata. In practice, normalisation can be a barrier to performance due to the

increase in the number of JOINs required to access the data [50, 51], which in consequence

increases the number of table- or index scans required to read all data from disk into memory.

This is exacerbated by the different locations of that data on disk, meaning a higher proportion of

non-sequential reads than would otherwise be required.

To illustrate this point, consider a database query which means ‘to display the product name and

product colour of all red bicycles where the stock level was last updated after 01 Jan 2019’ from a

database containing products. This can be structured in many different ways, but the performance

outcomes will differ. Fig. 2.4 illustrates a query which implements this expression in SQL using a

3NF-normalised schema. Note first the complexity of the normalised query and the corresponding

execution plan. Fig. 2.5 illustrates the same query, implementing the same expression, with the

same result set, implemented against a denormalised schema. In Table 2.6, the relative resource

consumption is compared, noting the significantly higher amounts of resources used by the first

query than the second; with the additional complexity of the normalised plan realised as a full

optimisation cycle rather than a trivial optimisation (implemented in Microsoft SQL Server).

- 45 -

Fig. 2.4: Illustration of a normalised database query

Fig. 2.5: Illustration of a denormalised database query

- 46 -

Table 2.6: Relative costs compared between queries

2.5.3 Other query tuning strategies

One further strategy for coping with the inflexibility of database schemata is the use of views. A

view is a query over some set of relations, but persisted to the database so it can be used again.

Views can be categorised as materialised (or indexed), and non-materialised [52]. The former is a

view which is connected to the underlying schema - if the schema changes, the view becomes

invalid, since it is underpinned by an index that fetches the data referenced in the view. In this

sense the view is a highly-specific index used to retrieve data corresponding to a particular query -

the disadvantage of this approach is the necessity to have the index as a separate data structure

from the base pages, meaning an increase in the storage required, a dependency to update this

index whenever the base table is updated and additional overhead in database administration.

Materialised views are non-compatible with some relational expressions, with especial difficulty

encountered when implementing outer joins. Non-materialised views, on the other hand, are simply

saved semantic representations of queries - when such a view is run, the view definition - the query

- is run against the base tables, and consequently attracts any performance issues each time it is

executed. This kind of view is created for simplicity and ease of use, but it serves only to mask the

query that constitutes it.

Good schema design is intrinsic to good RDBMS performance. Recently, there is an increased

focus on microservice architecture in application development [53, 54]. This paradigm is focused on

the provision of small, single-purpose services that interact through common interfaces to achieve

goals. Applied to database architecture, this can result in the provision of many small, single-

purpose databases that hold data pertaining only to the owning application service. While this

- 47 -

advantage can yield benefits in code simplicity and local performance, the same schema design

problems that attach to larger databases also exist in smaller ones - to normalise or denormalise,

which data types are most performant for the data being stored, whether to use hard-defined

foreign keys or rely on application-enforced soft keys, and how tables should relate and depend

upon each other. Arguably the overhead of maintaining many small, independent databases may

improve the simplicity of the system from an application development perspective, but also

increases the complexity of database administration. Microservices architecture may simplify

access for the application developers but there is no evidence that it alleviates query performance or

schema design issues.

2.5.4 The role of schemata in query optimisation

At the time of writing, there is very little current research into better schema design in relational

databases. With the improvements and recent focus on machine learning (ML) as a solution

applicable to many different domains, there exists a gap in building a better schema design

framework that is malleable and better-performing than single, fixed schemas, and this gap may be

filled by ML-powered techniques. Chen [55] made exploratory forays into the applicability of ML

to schema design, but follow-up research has been slim. This issue, and other research into this

area is discussed in the next chapter, and the solution presented in later chapters describes the

design and implementation of an ML-powered learning process for autonomous relational database

schema design.

The existence of a pre-defined schema is integral to the concept of a relational database. As a

relation is defined as a collection of related records from across one or more sets, with appropriate

filters [25], ergo these sets must exist before a relation is formed upon them. This idea of schema-

on-write, as it is also known, means that when data is recorded into a relational database the data

is written into the pre-formed schema using the defined rules of SQL and the RDBMS. This differs

from schema-on-read, where data is drawn (typically in non-relational database systems) from a

data 'lake', or loosely-defined schema, and reformed into the appropriate configuration during

runtime for the benefit of the application [56]. This latter method of fetching data is used

extensively where the data itself does not form a consistent structure from record to record - data

such as the content of tweets [57], or data derived from web frameworks where the attributes

(columns) of the data can change in their definition from software release to software release.

Other database performance issues are rooted in schema design. Tables with large numbers of

rows, for example, are subject to longer data retrieval times since the underlying heap (unindexed

- 48 -

table) or index can comprise many millions of pages, and index traversal times will increase

accordingly. Strategies exist to counter these issues such as the use of supplementary indexes [58]

and the use of in-table partitioning [59], together with infrastructural strategies such as the use of

faster storage for heavily-used tables and the variation of transaction isolation levels to reduce

locking [60]. Karwin [30] identifies 'god tables' as a design anti-pattern; these are tables which are

so integral to the retrieval of data they are referenced more so than the average for the rest of the

schema, to the detriment of performance as their associated pages are queued for access.

Denormalised databases are sometimes seen as potential solutions for the complexity introduced by

normalisation and to increase the efficiency of data retrieval. Sanders and Shin [61] provide a

treatment of the history of denormalisation and the performance effects on relational databases.

Citing Hahnke [62], they note that denormalisation seems particularly effective in business data

environments that are analytic in nature (such as data warehouses, or data marts), constructed

using guidelines such as the Kimball or Inmon methodologies [63, 64]. They also note that

denormalisation is a successful strategy when there is a complete understanding of application

requirements available. This is a crucial point, since by design normalised databases can cope well

with different application needs, and as the application matures a well-normalised schema can serve

many different purposes. As Batini et al. [65] argued, the database environment should be such

that "all users' data requirements and all applications' process requirements are 'best satisfied'".

This aim would appear to be tangential to a database schema that is denormalised to cope with a

specific application's needs, or even to the needs of a particular query. Therefore, it can be

concluded that denormalisation alone is not a sufficient strategy to ensure system-wide assurance of

efficient database query processing since there are trade-offs between the scalability of

normalisation and the performance effects of de-normalisation.

2.6 Chapter Summary

This chapter introduced the Relational Database Management System (RDBMS) and explained the

role and importance of these systems in the context of modern application software platforms,

describing how traditional relational database systems face an extraordinary challenge in dealing

with the growth of data generated by ever-expanding application data generation driven by societal

uptake of new technologies. The rise of object-oriented programming techniques was charted, and

their influence in creating object-relational impedance mismatch issues when establishing a data

access layer in application architecture was examined by surveying the key literature in this area.

Finally, the key steps of the query optimisation process framework within RDBMSs were discussed

together with a variety of performance optimisation strategies within this framework, including

- 49 -

design-led approaches such as normalisation and use of views, and engine-led approaches such as

query parameterisation, with reference to the literature.

Chapter 3 presents a topical literature review examining historical and current research for some of

these issues in more detail, together with other selected topics closely related to the aims and

objectives of this research.

- 50 -

Chapter 3: Literature Review

3.1 Introduction

This chapter investigates several key research areas that inform the problem definition and design

of this research; database performance tuning, existing query parsing techniques, object-relational

mapping technologies, information representation using graph theory and machine learning for set-

theoretic applications. In line with the chosen research philosophy, these areas are investigated

using a pragmatic, top-down approach rooted in grounded theory. For each area, a topical review

of both historical and current research is presented, with the inclusion of other relevant material

from industry where appropriate.

3.2 Literature Review M ethodology

This literature review was influenced by concepts taken from grounded theory, particularly using

the technique of theoretical “memoing” [1]. The literature was identified using abstract review and

snowballing (following chains of previous references) as described in Chapter 1.

The following subsections give an overview of the historical and current research into the core

research areas underpinning this research, extending the introduction and definition of the general

themes that were presented in Chapter 2.

3.3 Database Performance Tuning

3.3.1 Overview

The importance of database performance tuning has been understood for many years. Shasha [2]

simplifies the definition of database tuning as 'the activity of making a database system run faster',

but tuning is also about reducing the load on the supporting systems so that concurrent

transactions or other system activity are able to complete in an efficient timeframe. However,

Shasha also emphasises the importance of writing database queries in such a way that they

consume the least time on not just the underlying hardware, but the underlying data structures - in

particular, the reduction in locking time on the data pages of the tables involved in the transaction.

This paper also notes the performance implications of using a serialisable approach to sequential

record inserts in B-tree structures, an observation which has stood the test of time and is still

- 51 -

reflected in the current advice on concurrency restrictions in serialisable transaction isolation levels

as issued by RDBMS developers such as Microsoft [3].

3.3.2 The effects of data growth and maturity in query tuning

The purpose of RDBMS systems is to store and manage large amounts of structured data. Often,

this data accumulates over time - indeed, records themselves might have strong temporal links,

such as the accumulation and storage of log files, or for sets of financial transactions. This means

that data will accumulate in the data structures and consequently, over time, the behaviour of the

query optimisation process will change as the volume of the data increases. In RDBMSs, there are

several approaches to managing an increasing pool of data. Horizontal partitioning [4] concerns the

separation of a set of data (i.e. in a table) into several subsets based on some partition function.

This is a technique supported in all major RDBMS systems and has the advantage of reducing the

number of records required to be searched during a table scan, since only the partition where the

record is expected to be located is targeted. Vertical partitioning, also known as sharding, is used

primarily in non-relational systems since it involves splitting a table column-wise, which under the

relational model would necessitate extra JOIN operations, computationally expensive.

Several attempts have been made to demonstrate the viability of vertical partitioning in relational

models. Antova et al. [5] propose the extension of relational algebra with 'U-relations', a relational

operation that can calculate possible rather than definite answers to a query, which inherently

supports vertical partitions between tables. Cornell and Yu [6] examined vertical partitioning

algorithms, citing earlier work in this field by Navathe et al. [7]. However, Cornell and Yu is

limited to some extent as their approach is static in nature - the vertical partitioning is applied at

the segment level (collections of physical data pages), not necessarily at the logical level; their

approach applies only to lower the number of disk accesses rather than lower the complexity of the

query; and as the authors state in the paper, is unsuitable for queries that access the 'non-primary'

segments (the columns accessed via JOINs on the primary key column(s)) relatively often.

Rodríguez and Li [8] proposed 'dynamic vertical partitioning', a rule-based system where database

queries were monitored for the attributes most commonly used, and tables vertically partitioned to

accommodate the most common queries, thereby regularly changing the face of the database

schemata. This latter approach is alike to the approach proposed by this research, discussed in

later chapters. Today, horizontal partitioning is commonplace across all major RDBMSs but

vertical partitioning has not been implemented, save within some niche features such as

columnstore indexing [9] and is viewed as applicable only to NoSQL, or non-relational, database

systems. The novel approach of this research project, creating divisions of the base schemata into

- 52 -

subsets, provides a combination of both horizontal and vertical partitioning at the tabular level to

reduce the data necessary to parse to provide query responses.

Another approach to large-volume data management is archival. Considering an organisation such

as a bank, it would be a reasonable assumption that the most common data accessed within the

relations that store a customer's financial transactions would be the most recent ones, with less

frequent accesses to slightly older data (perhaps in the form of generating statements, or

aggregations of recent transactions) and almost no accesses (or none at all) to very old data, such

as banking transactions from some months or years ago. In this circumstance, data archival could

be a valid strategy for managing the volumes of data. Archiving data removes the rows from the

tables, normally to 'cold storage' or at the least, out of the active tables. This reduces the number

of rows involved in each subsequent query, speeding up accesses. There is comparatively little

research available in the field of relational database archival strategies; conceivably, this could be

because the movement of data is well-understood and could be seen as a common component of a

business process workflow. Such an approach could be modelled as a rule-based system; for

example, rows from a 'Sales' table could be archived on a regular i.e. monthly basis, removing the

oldest month of data to an archival table or separate database. Such an approach is used with

partitioning (see above) in so-called 'sliding window partitions', where data matching some rule is

regularly re-allocated to matching partitions. Nehme and Bruno [10] present this concept as part of

a wider partition management strategy in the setting of a parallel database system; an

implementation of this technique in a popular RDBMS is detailed by Sundar [11].

3.3.4 Schema design and the effects of normalisation

During the design process, entities and their attributes are identified and linked, and the data flow

between entities is mapped, often with tools like Entity Relationship Diagrams (ERDs). This can

take place at the conceptual, logical and physical layers. Consequently, this translates

organisational requirements into logical schema designs similar to application class diagrams which

show how each entity interacts with others. However, in the database, the schema may be mapped

differently - this is the physical schema design, and this can differ from the logical design in a

number of ways - for example by normalisation, naming conventions, key management or RDBMS-

specific implementation details. Martyn [12] notes that complexity in database schemas is not

necessarily a problem: "If your real world is inherently complex, then your logical schemas should

represent this complexity, and your users must understand this complexity in order to accurately

formulate their queries". Thus, Martyn shifts the responsibility for efficient query formulation from

the system to the user. However, in systems where the queries are generated by external providers

- 53 -

such as ORMs, this abdication of responsibility is meaningless. Instead, the schemas must

themselves behave in ways conducive to good performance of the database as a whole.

To this end, normalisation (discussed in the previous chapter) is often used to model these complex

relationships but has been identified as a barrier to performance. Normalisation allows the

modelling of complex relationships (for example many-to-many relationships) in such a way that for

all tables in schemas compliant to normal form (which range from 1NF through to 5NF, then

various specialist versions such as BNF), each relation corresponds to certain rules. For third

normal form (3NF), this consists of row/column intersections that contain single values; all tables

have a primary key, and all non-key columns in the tables are dependent wholly and only on the

primary key for the table with no transitive dependencies. This has some advantages, including the

reduction of duplication in the database, but this can be at the expense of query complexity

through the increase in the number of JOINs required to satisfy a query. Lee [13] recognised this

as a problem of cost vs. benefit and produced a methodology for determining the extent to which

normalisation should be applied to a design, using a system of decision trees, and formalised the

benefits of normalisation in terms of storage space as a series of equations.

In contrast, Pinto [14] lists four principles as an argument for systematic denormalisation of

previously-normalised data schemas: convenience, stability, simplicity and performance, and goes

further to propose a denormalisation methodology. However, Pinto's case hinges on reducing the

complexity as presented to the user and to reducing the number of JOINs. The former point is

rendered invalid by the generation of queries via ORMs, leaving no human user for whom to reduce

complexity, and the latter point could be mitigated through e.g. the use of materialised views on

top of subsets of complex normalised schemas, or reduction in access times facilitated by faster

underlying infrastructure; and furthermore, such gains may be neutralised by the increase in data

volumes and therefore increased time spent on I/O operations that a denormalised schema would

bring. Sanders and Shin [15] recognised these disadvantages of denormalisation and called for a

balance between both normalisation and denormalisation together with a better understanding of

application requirements.

Database schemas can also change over time through the introduction of new application design

features which necessitate the redesign or extension of the logical database schema to accommodate

the data requirements of the new features. Al-Barak and Bahsoon [16] recognised the difficulties

caused by schema evolution, which they termed 'database debt', through a case study; namely, the

absence of referential integrity due to restrictions in the implementation; violation of normalisation

rules; violation of atomicity of values (single values in each row/column intersection), also a breach

of 1NF; and overlapping tables - tables storing columns duplicated elsewhere, also called a breach

of orthogonal design [17].

- 54 -

3.4 Query Tuning and Frameworks

3.4.1 Overview

As described in Chapter 2, database queries are implemented in SQL which obeys a common

ruleset enforced by the standard [18], notwithstanding extensions to the language provided by the

various RDBMS manufacturers. There are various pitfalls associated with writing database queries

that can be traced, at least in part, to the influence of object-oriented thinking to a set-based,

relational and functional programming environment. Karwin [19] identified various SQL 'anti-

patterns' - these are patterns of behaviour that can be exhibited in both manual and ORM-driven

settings. One such anti-pattern is the so-called 'N+1' problem, where rows are queried individually

and repetitively before being amalgamated by the calling application. This anti-pattern exists in

manual queries too but can also be enabled by the applications, and only limited assistance is

provided by indexes [20].

Karwin also identified other query design anti-patterns; the so-called attribute-value pattern, where

data is stored as key-value pairs in a relational database, subverts the structure of the relational

model by storing attributes (columns, or domain values), in rows. Other anti-patterns are the

misuse of NULLs, where blank or empty string values are substituted for NULL (or conversely,

where NULL is used inappropriately). NULL has several unusual properties, including

immutability and non-identity; the expression NULL = NULL, for example, is a contradiction.

However, there are advocates for NULLs in database systems; Zaniolo [21] advanced the possibility

of incorporating the concept of NULL from the implementation layer into relational algebra to

represent unknown values. Another anti-pattern is to use pattern-matching inappropriately within

a database query; using wildcard characters in LIKE or IN statements, for example, is very difficult

to tune for since the full string of the values in any included columns will need to be parsed to

determine whether they match the predicate.

3.4.2 Index-based query optimisation

Indexes can be categorised as two forms: an arrangement of data pages in such a way that the

pages are accessible using a structure called a B+-tree [22], where some inherent order is required;

or an arrangement of supplementary data pages that sit alongside the base table data and allow

queries to access data partially or solely from this structure to satisfy a query. These structures are

also in B+-tree form. Tables not in an indexed form are called heaps, which are simply collections

of unordered data pages, and are the most expensive (in terms of disk accesses) structures to read

from, but can be swift to write to, since pages can be written contiguously and not require page

- 55 -

splits or index reorganisation. This is a subject of some debate in the literature, since in the right

circumstances a clustered index (index of the first type, non-supplementary) can be quicker for

writes [23]. Modern database implementations use complex tree optimisation techniques to manage

and access B+-trees since their initial introduction to relational databases [24]. These methods are

often proprietary in commercial RDBMSs.

It is understood within the industry that a careful trade-off is required between the implementation

of indexes to alleviate delays caused by excessive reads and the overhead this requires in terms of

additional writes to these indexes upon table insertions, updates or deletions, the additional storage

required, and the additional load on the query optimiser at run-time [23, 25, 26]. The mechanisms

of indexes themselves have been the subject of much academic enquiry; Lu et al. [27] considered the

use of the T-tree, an alternative to the B-tree, for memory-resident databases; Cooper et al. [28]

considered the use of indexes in semi-structured data; early research noted the suitability of R-trees

and their variants on non-traditional databases, including those with spatial data [29, 30]; more

recently, Fuhry et al. [31] presented an indexing methodology based on B-trees suitable for use with

encrypted data, and Dziedzic et al. [32] explored the possibilities of hybrid columnstore and B-tree

indexes in RDBMSs. On a practical level, database administrators will look to ensure that indexes

in RDBMSs are neither excessive nor missing; that they adequately cover a broad range of queries

on the base tables; and that they are properly maintained, to wit that they are not excessively

fragmented.

3.4.3 Infrastructure considerations and other mitigations

Other best practices in database management include the due consideration of the underlying

infrastructure of an RDBMS. Although infrastructural considerations are not considered a primary

objective of this research, some discussion is useful on the impact of the physical layer on the

performance of database systems. Storage, for example, is particularly important when considering

that RDBMSs will often access data pages and that these data pages ought to be as accessible and

responsive as possible. Typically, then, read operations will work best across contiguous data pages

(pages which are adjacent) rather than fragmented pages, the latter of which will manifest as a

random I/O access pattern [33]. Traditional hard drives will fare particularly worse than solid-

state drives or provisioned cloud storage due to the mechanical limitations of these drives.

Therefore, it is generally accepted that RDBMSs should generally be based on servers which are

solely directed towards the RDBMS and do not co-tenant with other applications or even other

unconnected databases [34]. Furthermore, various best practices exist concerning the location and

co-location of database files; while main database files, for example, tend to incur random reads

from many different concurrent queries, transaction log files incur mostly sequential writes, and so

- 56 -

the two are normally separated onto different drives for better performance. Any temporary

database or temporary 'scratch' files are normally located away from the main database files for

similar reasons [35].

From a computational perspective, most RDBMSs support parallelism and so it is advantageous to

provide multiple processor cores to service queries [36], although in rare circumstances an

overabundance of processor cores coupled with the misconfiguration of the parallelism settings in

the RDBMS can actually cause queries to return slower in a parallel environment than when

running on a single thread, and in some cases using parallelism can result in query conditions on

the applications [37]. Other environmental considerations are the amount of main memory

available to an RDBMS. It is increasingly found that databases can be hosted entirely in memory;

indeed, some RBDMSs support this as a feature. The advantage of doing so are vastly increased

access times to the data pages, since the reliance on the underlying storage is removed; however,

there is a potential for data loss using this method since in the event of power loss or other

malfunction, any data not persisted could be destroyed. The operating system also has a part to

play in the proper performance of an RDBMS. On Windows-based systems, for example, some

configuration is required to ensure the RDBMS software has a greater degree of control over paging

than other applications might require [38]

.

3.5 Existing Query Parsing Techniques

3.5.1 Context

When presented with a SQL query, the query must be transformed in such a way as to present a

clear and precise algorithm to the underlying database engine. This algorithm must specify which

operations to complete, in which order, and how the operation should be carried out. Although

SQL queries are based upon set-theoretic concepts [39], they are also based in natural language,

and this means a translation from query to algorithm is required before the query can progress

through the query optimisation and execution process. In this sense there is little difference

between the treatment of SQL queries to the treatment of any other higher-order language - the

SQL query is compiled into a form that can be executed. This translation is called query parsing

[40], or query simplification, and in essence seeks to tokenise each element of the query to identify

the assets (such as data tables) and the operations (such as joins) which will then enable the

computation of a viable execution plan.

The translation of a piece of original text to a taxonomy or structure against which one can

compute is not a novel problem and has many overlaps in different areas of research including

- 57 -

natural language processing [41]. Extracting meaning from natural languages is difficult not least

due to wide vocabularies, linguistic anomalies and difficulties in understanding context-based

sentences [42]. However, database query parsers have several advantages over natural language-

based solutions. First, the SQL language is, when compared to the full gamut of a natural

language, artificially constrained in breadth. The choice of verbs is severely limited, the constructs

allowed are clearly specified, and considerations such as contextual awareness are mostly non-issues.

Secondly, there exists a clear set of rules for understanding the SQL language, as encapsulated in

the standards, although extensions to the core SQL language are not generally platform-agnostic

and implementation anomalies exist, discussed below. Thirdly, the SQL language consists of

constructs which can map from the relational algebra and to a set of machine instructions, rather

than the allusions and statements present in natural languages, which means constructing the path

from relational expression to machine instruction is much simpler than constructing the path to an

action from an extract of natural language. This precise point is also noted in Zelle and Mooney

[43].

The SQL language does have a difficulty that is not present in natural language. The dialect of

SQL mandated by the ANSI-SQL standards is a core set of language directives which is specified to

be implemented by all relational database management systems - to put it another way, it is known

and finite. However, there is no prohibition on database software implementing additional SQL

language constructs above and beyond this core set of standards. This is especially true for non-

relational or hybrid relational database platforms, for example the object-relational SQL standard

[44, 45]. From a business perspective, this adds distinction, uniqueness and value to the product

(the RDBMS) since it reduces interoperability, reduces transparency, and by increasing the

complexity of doing so, reduces the incentive for consumers of these systems to migrate away in the

future, thus preserving future revenue. As a result, the major RDBMS systems operate on,

essentially, the core ANSI-SQL standards but implement a superset of additional features to add

this unique value. In Oracle and later versions of IBM DB2, this superset is called PL-SQL, which

includes the ability to interface much more closely with the underlying operating system and

application programming languages [46]. In Microsoft SQL Server, this language is called Transact-

SQL, or T-SQL, which extends the core language by including, for example, features like XML

integration [47]. The two extensions are not interoperable or compatible.

To add confusion to the issue, sometimes even the core ANSI-SQL language specifications are

construed and implemented differently: Oracle uses LIMIT to limit the results returned by a query,

while Microsoft SQL Server uses TOP. IBM DB2 allows joins to user-defined functions using a

special TABLE() syntax, whereas elsewhere, the syntax is to reference the function as a table

directly in the join. Oracle Database allows CONTAINS(), which is unsupported by Microsoft SQL

Server. Most of the RDBMSs implement the information schema (the schema containing the

- 58 -

metadata about the other objects in the RDBMS) differently - MySQL and its variants use

INFORMATION_SCHEMA and commands like SHOW, and Microsoft SQL Server uses a

combination of an information schema and dynamic management objects. Although ANSI-SQL is a

widely-accepted standard, there is no effective external body, such as an enforcement agency or

legal mechanism which can force adherence to these standards, and consequently the languages

diverge as a result of both business considerations and software entropy, introduced over as the

product lines continue to evolve.

3.5.2 Tokenisation and the parse tree

One of the first stages of parsing a database query is to identify the objects within the query and

the operations upon those objects. The implementation of this varies - in Microsoft SQL Server, it

is split into two stages, parsing (checking the query is valid, with the output a parse tree) and

algebrisation (also known as binding), with the output an algebrised tree. The parsing stage has

two functions - to check the query is syntactically valid, and to reconstruct the query in a form

ready for binding to known objects and operations.

Parse trees, also known as syntax trees, are concepts that exist outside of the database domain and

are applicable to many context-free grammars (such as programming languages) including SQL.

However, although the language itself is context-free, some context must exist between various

adjacent (or non-adjacent) terms within a database query since, for example, a join must identify

two or more tables to join and the columns to join upon, each of which will be tokenised as

separate elements in the tree. This relationship can be called a dependency. Pitts [48] identified

how the difficulties of compiling syntax trees are compounded by this issue of binding to adjacent

objects and proposed a system of higher-level classes to represent these permutations together with

theorems that govern recursion and inference when constructing these trees.

In programming practice, these theorems are less abstracted. For example, Lucene syntax [49],

which underpins the Elasticsearch open-source framework, includes the facility to search using

tokens - that is, to break apart the terms of a query into individually-identifiable elements that can

be manipulated - then use various functions such as AND, OR and tools such as thesaurus

extension lookups are implemented in SOLR [50] to support the QPL (Query Programming

Language) language used in some widely-known search products.

Efficient tree structures allow the accurate representation of sentences or queries for use further

along the processing pipeline. Many trees of this type are dependency-based - that is to say, nodes

are all terminal, and dependencies can exist between words. Covington [51] describes dependency

parsing in some detail, where words in the phrase are allowed co-dependencies (analogous to

- 59 -

database queries) and presents a general algorithm for creating these trees. Dependency trees are

suitable for finite grammars, such as SQL (where the domain of all possible words is known), as

detailed by Chomsky [52] in his discussion of reduction, simplification and dependency

determination - Chomsky is also a very early source for depictions of early parse trees (for natural

languages). As opposed to dependency trees, there exist so-called constituent trees, where nodes

may be non-terminal; in typical natural language, a non-terminal node may be a noun phrase under

which exist various words in the phrase as terminal nodes, and so the noun phrase is descriptive

rather than designating a specific word. However, this does not apply in the most part for

database queries since these queries are dominated by individual words which have inherent

meaning, rather than phrases (there is little wastage in SQL syntax), hence the use of dependency-

type trees.

Covington also points out that constituency-based trees and dependency-based trees have

significant overlap if the 'x-bar' linguistic restriction is placed upon the latter [53] to force all non-

terminal phrases to have a single terminal node designated as its identifier, and so the difference

becomes less important. Fig. 3.1 shows a simplified example of a parse tree, and an associated

execution plan, for a database query. Note how the tree deals solely with the tokenisation and

relationships between tokens, but the execution plan is the finished product of a binding and

optimisation process that describes the operations that will take place against the database objects.

By examining the components, it is shown how the execution plan is derived in part from the tree.

- 0 -

Fig. 3.1: Parse tree illustration – tokenised tree vs. execution plan

- 1 -

3.5.3 Query parsing in practice

The implementation of the query parser in MySQL has two elements - a lexical scanner, and a

grammar rule module [54]. The former is responsible for tokenisation - deconstructing the query

into atomic elements. The latter is responsible for analysing the flow of tokens (words) and

identifying appropriate rules. Tokenisation is a conceptually simple technique that can be done

through the application of a series of rules. For example, one rule could be to split a query into

words based on some delimiter, such as a space. Fig. 3.2 illustrates the basic tokenisation of a

database query. However, some other rules must come into play, as special characters are

important - brackets, commas and other punctuation can alter the purpose of a statement within a

query and should be included as discrete entities.

Fig. 3.2: Query tokenisation example

- 2 -

Both PostgreSQL and MySQL uses several functions written in C to implement this tokeniser - the

entry point to the tokeniser for MySQL is the yylex() function in the file sql/sql_lex.cc in the

MySQL source code [55], which uses GNU Flex, an implementation of the LEX language [56]. The

general process is to hash each token, look up keywords and functions against pre-existing stores,

and associate symbols to each token for use by the grammar rule module. The grammar rule

module takes the token stream as input and searches the stream in order to apply known rules

(rules are available in sql/sql_yacc.yy, implemented by the Yacc compiler [57], which itself is an

implementation of Backus-Naur Form (BNF) grammar notation - the compiler is implemented in

C), doing this using the Bison utility [58]. Bison is a tool for converting 'annotated context-free

grammar' into parse trees using a one-token LALR (look-ahead left-to-right) parsing technique.

This technique was originally introduced by DeRemer [59] on the basis of the seminal paper on the

LR parser by Knuth [60] on general LR parsers.

The LALR(1) parser is a simplified left-to-right, bottom-to-top parser of a token stream that does

not require backtracking to apply rules and is memory-efficient. The resultant tree from the Bison

output is stored in a parsing table for use by the next stage of the MySQL query optimisation

process. With minor variations in the entry points for the parser and the resulting data structures,

this parsing process is identical for PostgreSQL. It is not possible to assess the internal parser for

some other RDBMS systems such as Oracle and Microsoft SQL Server due to the proprietary and

closed nature of their source code.

3.5.4 Current research

Little evidence has been found that new query parsing techniques are being developed for use in

RDBMSs; however, research into related problems using modified or existing query parsing modules

is prevalent. Query parsing in RDBMSs is a subset of the wider problem of semantic or natural

language parsing in information theory, and this field is active with some overlap into applicable

issues for database query parsing. For illustration of this point, SPARQL [61] is a SQL-like

language designed to allow queries across the so-called 'semantic web', to be used intrinsically

within search engines to retrieve information based on some supplied predicates. Queries in both

SPARQL and SQL use common clauses such as SELECT to project results based on some criteria,

however some translation from natural language inputs (such as searches) is required. Better

parsing methodologies compatible with SPARQL (which, by extension include SQL) have some

applicability to SQL parsing [62, 63] since SPARQL is a superset of SQL, and in an older source,

Zelle and Mooney [43] addressed the precise problem of mapping natural language queries to

relational database queries through an experimental implementation in PROLOG.

- 3 -

There is some current appetite across research and industry for the modification of new query

parsers to suit the purposes of the applications using query languages. This is shown by the

literature - Eldawy et al. [64] propose a system for spatial data handling that includes the injection

of new features for spatial data types in the Impala parser. Abstracting away from specific parser

implementations, the ANTLR tool enables users to build new classes of parsers for cross-platform

purposes (based on the parse tree methodology), and these have been used successfully in academic

settings to build new SQL parsers both in relational and non-relational databases [65, 66, 67].

There is also at least one commercial offering available for single-component parsers, such as the

'General SQL Parser' suitable for implementation in various high-level languages [68].

In a wider context, there is significant overlap in general string parsing in NLP and clause-based

query parsing, as shown in Thenmozhi and Aravindan [69] who illustrate a method for identifying

paraphrases within strings (as opposed to tokenisation of individual words through delimitation, as

previously described) using support vector machines. This method of grouping words could have

applicability to improving the efficiency of the tokenisation process for database queries. However,

NLP is arguably more concerned with the problems of analysing natural languages rather than the

parsing of programming languages and as such there is little continuing current research on parsing

database query languages, which are subsets of the latter.

Analysis of older research reveals some sources which shed light on how today's query parsers have

been developed. Ozsoyoglu et al. [70] described a method for query parsing based on recursive

pattern-matching of input database queries using a match-bind process very similar to the modern

process of parsing and algebrisation, but in the context of a proposal of a summary table-by-

example RDBMS. Chamberlin et al. [71] discussed the System R 'precompiler' which abstracts the

parsing, binding and access path selection elements from the critical path of a transaction for the

faster execution of queries, an approach used in part today in Microsoft SQL Server when using

execution plan stubs for ad-hoc queries [72].

3.5.5 Query parsing limitations

Query parsers used in RDBMSs are subject to some limitations, which can be examined by an

analysis of the underlying theory of the methodologies for the parsing process and examination of

adjacent, related research.

The creation and evaluation of parse trees is fundamental to the query parser. Li et al. [73]

question the effectiveness of tree structures for language parsing on a general basis. Although their

research is in the contexts of recursive neural models and NLP, the method examined is the

bottom-up generation of syntactic parse trees, an identical method to that used in parse tree

- 4 -

generation in MySQL and PostgreSQL RDBMSs. The authors conclude that for semantic

relationship classification (the pairing or grouping of sequential or close words in some given

sentence to add meaning, as required for SQL clauses such as SELECT [column_list] or FROM

[table_name]), recursive modelling using neural networks can outperform standard tree creation

algorithms - the time to create these is reduced. However, for discourse parsing, which also has

similarities to SQL in that the input sentences tend to be short and there are relationships between

sentences that need representation in the tree (in SQL, SELECT ... FROM ... WHERE), there were

no significant differences found between the authors' new methods and the existing ones. Further

work extending Li et. al to the SQL language would be beneficial in clarifying further whether any

benefits are possible.

Fagin et al. [74] provide an overview of probabilistic versus rule-based approaches when discussing

research into resolving ambiguities and inconsistencies in information extraction systems. Parsing

of relational database queries is achieved through rule-based systems which group token streams

and bind the commands and database objects to the query operations and the database objects

respectively, and Fagin et. al. note that limitations of such systems are the ad-hoc nature of rule

creation and the overhead of rule maintenance (for example, the parser is subject to further

development as the SQL language evolves). Even if the rules are clearly defined, rule-based

systems are not straightforward; Trim [75] states that tokens should be both a) linguistically

significant and b) methodologically useful, and cites others [76, 77] in recognising that tokenisation

is fraught with difficulties, such as recognising the differences between significant and insignificant

whitespace, dealing with punctuation, and dealing with text that is improperly formatted.

These limitations open avenues for exploring query parsing alternatives, or supplementary

techniques for reducing the workload sent to the query parsing process through query pre-

processing. Our research project introduces a novel method for doing so using multi-dimensional

adjacency matrices for query representation, and a new method of inter-query similarity scoring

using statistical methods to reduce plan cache recompilations.

3.6 Object-Relational M apping Technologies

3.6.1 Overview

Database queries are generated from a variety of sources. Increasingly, such sources include object-

relational mapping (ORM) frameworks, which are interpreters between object-oriented languages

(such as Java) and the set-based reality of the relational model. Using these tools, fixed SQL

syntax is generated from method calls on the application side for use in the database engine, and

- 5 -

the database engine returns results which are translated into the appropriate application-side data

structures for further use.

Object-oriented programming methods and languages have become prevalent over functional

methods and languages. This has led to disparity between the class-method-interface model of

object-oriented programming and the SQL query interface of the relational database; this disparity,

termed object-relational impedance mismatch, has been charted in the literature [78, 79, 80] and

proving the extent of this issue has been the focus of our previous research [81, 82, 83]. Ireland [78]

classified this problem into four facets of a conceptual framework: paradigm, language, schema, and

instance, and in response to the difficulties of overcoming the object-relational impedance mismatch

problem, the industrial response was development of object-relational mapping (ORM) tooling.

In response to this mismatch, intermediary ORM software agents were developed which include the

automatic generation of queries using a supplementary object-relational map, allowing developers to

call a method rather than write queries directly. The language then uses this interface by calling

methods, which the ORM then translates through its internal data model and into database

queries, issued against the database query engine. When the result set is returned, the ORM

presents the result set in the specified format. These tools have various restrictions which limit the

use of conventional relational query tuning mechanisms – for example, a propensity for nesting

rather than joining, row-by-row (also known as N+1) query patterns (discussed elsewhere), and

eager fetching [84, 85]. These issues could be overcome with careful query tuning, but unlike

traditional non-ORM queries, ORM queries are generally inaccessible for rewriting as they are

generated at runtime and not stored inline, nor stored as functional code blocks like stored

procedures. This can present significant difficulties when tuning for system-wide database

performance since there is little control over the query execution. More generally, this use of

object-oriented application development causes a clash between the object and the relational model

- essentially, this is a structural incompatibility between the characteristics of an instance of an

object and the data stored in a relation, such that the data in the table cannot be stored as

attributes in the object on a permanent basis but must be populated via query. As objects in

object-oriented programming languages can be highly variable, so too can queries.

3.6.2 Performance challenges from ORM technologies

Query performance tuning is a well-understood field in relational database management. However,

relational query-centred performance tuning approaches only work when the queries are accessible

for tuning, that is when they are in a format which is compatible with query tuning mechanisms

such as the cost-based optimiser. Since the inception of relational database systems, the principal

programming paradigm has gradually shifted to Object-Oriented Programming Languages (OOPL)

- 6 -

[86, 87, 88], where objects are created and destroyed during normal application workflows and

consequently database queries are generated when needed, rather than called from a query library

or stored procedure.

Tuning the queries is often the first step in dealing with performance issues, with inefficiencies in

poorly-performing query structures removed or rewritten to best match the tables present within

the schema, as discussed in Chapter 2. This is appropriate not just to generate low-cost execution

plans, but because structural changes to schemas can result in processes dependent on the existing

structure being unable to function – for example, the amalgamation of a set of sub-tables into a

single table (denormalization) with the aim of reducing joins may require changes to all

applications which use queries that call data directly from the original subset of tables [89]. While

this limitation to the schema definition can be overcome by the augmentation of the schema with

structures like views or indexes, finding and mitigating query inefficiencies instead of schema

inefficiencies can result in swifter problem resolution, something that can be difficult to do with

ORMs since ORMs generate queries automatically based on pre-defined rules and heuristics which

are not necessarily geared to produce well-tuned queries [90].

Query-centred performance tuning requires the queries to be accessible, which may be through

storage within the application layer or definition within stored procedures, or otherwise subject to

direct manipulation without significant impact to application development. The limitations of

ORM tools include but are not limited to non-parameterisation, meaning almost-identical queries

can fill the RDBMS plan cache and cause unnecessary recompilations; eager fetching and the N+1

problem [85]; the use of nested queries rather than joins, creating inefficient query execution plans;

and excessively large queries which require more time to produce efficient execution plans than is

available in the optimisation process. These anti-patterns have ramifications in the eventual

execution plan.

ORMs are designed to mitigate many of the facets of the ORIM problem by the provision of an

interface from the application layer to the data layer. Despite this, ORMs are reported to have

pervasive performance issues which arise as an artefact of their design [19]. Chen et al. [80]

demonstrated that these anti-patterns can include the ‘N+1’ problem; this is where a query is

implemented as a series of row-by-row implementations. Although this has the benefit of being

memory-efficient, from a database performance perspective this can produce an unwanted number

of table or index lookups (or scans, or seeks) and can lead to an exponential overhead in query

processing time and resource consumption. By the designs of relational theory, set-based queries

are preferred due to better efficiency and lower query cost [19, 80, 91, 92, 93]. Chen et al. [80] also

describe the eager fetching problem (‘excessive data’) where extra columnar data is brought

through to the application from within the query then discarded when the results are compiled.

- 7 -

They demonstrated a 71% increase in performance for a set of queries when mitigating this anti-

pattern.

Cheung et al. [91] repeated this finding and reported the details of how ORMs can hide this

behaviour from the user, for example by using pre-fetching. The consequences of pre-fetching data

include slower execution time, increased system resource use, and more data traffic. The

manufacturers of ORM tools also report adverse behavioural patterns with their tools; Microsoft

Corporation [94] describe 8 different performance considerations in a popular ORM tool, Entity

Framework that negatively impact query performance (7 of which occur before the query is

executed). They also discuss nested queries and offer commentary on the impacts of returning

large data volumes on temporary data stores and overall execution time.

Karwin [19] discusses SQL anti-patterns in general but specifically identifies issues with ORM-

generated queries. Models (in the Model-View-Controller arrangement) are very closely coupled

with database schemata; this means changes to the schemas can result in model incompatibilities.

Another related problem is inheritance; if a class is given create, update and insert capabilities,

subclasses can inherit from this class which can allow direct access to the database, reducing

cohesion.

3.6.3 Current research

To date, no conclusive solution to the object-relational impedance mismatch problem has been

identified, and research into this area is slow. Instead, various researchers have proposed

extensions and augmentations to the object-relational model to introduce new features or mitigate

some of the disadvantages of using ORMs. Malysiak-Mrozek et al. [95] investigated using fuzzy

logic within ORM tooling - this could provide the advantage of retrieving probable sets rather than

crisp sets of data, reducing the need for re-querying, at the possible expense of further data

refinement in the application. Raghu and Varma [96] propose using JSON as an alternative to an

ORM layer, particularly in shared databases (databases with more than one application reading

and writing from them). In industry, there are over 70 ORM frameworks available for developers

[97], indicating the maturity of ORMs as a perceived solution. However, the impedance problem

categorised by Ireland et al. [80] continues to exist, meaning further research into this area would

be beneficial to help close the gap between the object and the relational worlds.

- 8 -

3.7 Information representation using graph theory

One focus of the research in this thesis is the presentation of a multi-faceted theoretical solution to

the problem of optimising RDBMSs for the efficient processing of queries originating from non-

traditional sources, such as ORM frameworks. To achieve this goal, the internal representation of

queries must be considered since, as established, serious representational and optimisation

deficiencies manifest during the processing of queries from these sources. At present, queries are

parsed, tokenised and rearranged into trees, and the trees inform the design of the execution plan,

which is translated into a series of machine-level instructions and executed. Although this model is

ingrained in various modern implementations, the consideration of an alternative form of

representation for SQL queries is worthwhile in establishing whether such an alternative model can

reduce the costs associated with parsing a query in the tree form. To do this, an approach

grounded in graph theory is detailed in Chapter 7 using multi-dimensional adjacency matrices to

chart the 'shape' of a query and is used to make meaningful comparisons against other queries.

This subsection of the literature review therefore introduces graph theory; and outlines and

summarises historic and current research with a particular emphasis on the intersection of graph

theory and information theory, particularly in terms of relational or structured information.

Many problems can be modelled using graph theory, including database relations. Consider a non-

empty, simple directed graph G with |V| vertices and a collection of |E| ordered binary tuples

representing edges, or connections between the vertices, then a new relationship between any pair

of vertices can be represented by the simple insertion of an appropriate relationship, or tuple, into

E. This allows for the retention of information within the graph. For example, one may model two

vertices as 'Customer' and 'Purchase', which correspond to rows in the appropriate database tables

Customer and Purchase. The directed edge from 'Customer' and 'Purchase' can represent the

relationship 'has made a' - relationally, this may be stored as an entry in Purchase with a foreign

key column for some unique Customer identifier to the primary key column of the Customer table.

The direction of the edge also assists in indicating a many-to-one relationship - a customer may

make many purchases, but each purchase has one and only one customer. Thus, given a relational

database of customer and purchase data, one could conceivably create a bipartite graph to model

the relationships between each entity, by establishing a set of Customer(s) vertices as C (one vertex

for each row in the table) and a set of Purchase(s) vertices as P.

This is not an entirely new observation - Yannakakis [98] noted in 1990 that relational databases

can be represented as 'directed hypergraphs', equating the vertices to the domains (columns) and

the labelled edges as the rows. Other columnar information can even be encoded as properties of

the edge, such as the purchase amount as an atomic numerical value included in the tuple. One

can then use the properties of graph theory to derive meaningful analytics from this data; for

- 9 -

example, the average degree of the members of C is equivalent to the average number of purchases

made by customers (as is the ratio |C|/|P|); |V| indicates the total number of customers; and |E| is

the total number of purchases.

To understand how graph theory can be used to represent queries, one may look to the research of

the history of using graph theory for natural language processing (NLP), since query languages are

a subset of natural languages. Mihalcea and Radev [99] describe several applications for identifying

key aspects of a text block, particularly keyword extraction (by the association of vertices in a

graph with a ranking describing the importance of each vertex). Keyword extraction is considered

as a fundamental and critical technique within NLP, since doing so assists in the categorisation of

the text block within some ontology [100]. By identifying more keywords within a block, the

categorisation of the block can be attained in a more fine-grained manner. Matsuo and Ishizuka

[101] investigated the applications of keyword extraction including web page document retrieval,

document clustering and text mining. These applications are very similar to query parsing and

categorisation of database queries.

Given that vertices in a graph can contain properties, and these properties can be key-value pairs,

and vertices can have edges connecting them that represent relationships, and that these edges can

themselves contain properties in key-value pairs, then there is a clear parallel between relational

database theory (mandating the existence of sets and relations) and graph theory, since a relation

can be modelled as a graph, as described in the opening chapters of Robinson et al. [102]. This

ability for graphs to contain data has led to the creation and popularity of graph databases, an

alternative means of representing data to the relational model. This is distinct from the storage

and processing of relational structures or queries in graph form (queries being so-called 'L-paths' in

the query language L across a hypergraph [98] - a hypergraph being a graph where an edge

connects not just two, but any number of vertices). Graph databases are essentially collections of

key-value pairs, and relations between those pairs, stored and retrieved from an unstructured data

store. This raises questions about their suitability and efficiency when compared to relational

databases for storing and querying unstructured data - Vicknair et al. [103], in a study on the

efficiency of relational versus graph databases for storing graph data, noted disadvantages such as

the proliferation of more database objects and greater storage space (by a significant percentage),

although their overall results asserted the superiority of the graph database. It is noteworthy that

their comparison was on the full-text indexing capability only of the relational database rather than

testing the relational model per se, and that the relational database comprehensively outperformed

the graph database in all tests involving non-character data lookups.

Hypergraphs are particularly important concepts when considering the intersection between graph

theory and computer science. Adjacency matrices are binary matrices in an [X . Y] form with the

list of vertices along both axes whose intersections indicate whether two vertices are adjacent; that

- 10 -

is to say, connected by a node [104]. Conversely, incidence matrices record similar relationships but

from the perspective of the edge - one axis is a list of vertices, and one a list of edges. The

existence of an edge emanating from a vertex is indicated by a 1 at the intersection. Gallo et al.

[105] note that hypergraphs can be modelled using incidence matrices and incidence matrices are

correspondent with Boolean matrices. Given that database queries can consist of hierarchical

relationships then edges could then be drawn in two ways; firstly in a graph that is not a

hypergraph, by associating the column to the table independently of any association from another

vertex to the column; or by using a hypergraph and having an edge from another vertex to the

vertex representing the column that also passes through the vertex representing the owning table,

thus connecting both the parent and child vertices with the same edge that describes the

relationship with the external association. Both the former and latter methods are representable

using adjacency or incidence matrices, which means that they are computable (as Boolean matrices

are computable), and that this method could be used to represent the contents of any database, by

extension.

There are numerous studies and surveys that seek to extend the relational paradigm into graph

database theory, and vice versa. Reutter et al. [106] summarise how unions, JOINs and projections

(equivalent to relational SELECTs) can be performed using a combination of types of regular-path

queries (RPQs) against a graph database. They note, alongside Yannakakis [98], that such an

arrangement lacks an important algebraic property - transitive closure. Transitive closure is a

fundamental aspect of mathematics and relational algebra, defined as the minimal relation R on a

set X that contains some defined sub-relation R'. A transitive closure can, however, be modelled in

graph theory as a sub-graph G' of a graph G that contains all the directed edges of G [107].

Reutter et al. [106] assert that this property does not hold for RPQs arranged in such a manner as

to enable unions, JOINs and projections, and as such weakens any purported equivalence between

the relational model and graph theory, but is extendible with a special class of RPQs they

introduce as 'regular queries'.

Daniel et al. [108] addresses the problem of mapping conceptual database schemas to graph

databases, albeit using a non-relational implementation as an example. They note that graph

databases do not have mechanisms for ensuring relational integrity, as captured in logical schema

design (and enforced by physical schema implementation in RDBMSs). They use a model for

mapping UML (Unified Modelling Language) to graph database principles to address these

problems which incorporates a metamodel layer. This is the same conceptual design that informs

ORMs and another example of the object-relational impedance mismatch problem, which implies

the same kind of mapping problems [78] would result from the implementation of the meta-layer

between the relational and the non-relational.

- 11 -

If a database query were to be modelled as a directed graph incorporating all the relational

elements and operations of the query linked by relationships, then some method of similarity

detection would be necessary to avoid heavy computational overhead when comparing query

representations. Zheng et al. [109] identified the difficulty of executing efficient similarity searches

over large graph databases, particularly how noise can influence the effectiveness of this. If

representing queries, then noise could manifest as slightly different legal query arrangements,

corruptions, or aliasing, or similar but non-identical queries. This precise issue of the over-

production of similar but non-identical queries is a behaviour manifested by ORMs that sabotages

the ability of the plan cache to operate effectively in current RDBMS systems and which could be

effectively resolved by the fuzzy matching of query patterns. Fuzzy pattern matching in graph

systems, and the class of this problem, fuzzy morphism, is a general problem that has a substantial

current and historical presence in the literature [110, 111, 112, 113] but no universal solution.

3.8 Conclusions

Relational database performance tuning appears to have been investigated thoroughly following the

inception of RDBMS systems in the early 1970s; through the 1980s and early 1990s, progress was

made by a variety of seminal researchers whose names reappear frequently in both the academic

and trade literature; Codd, Date, Stonebraker, Elmasri, Navathe and others. However, although

RDBMSs have become entrenched as the fundamental design upon which structured data is

managed and accessed by a large proportion of today's database systems, academic research from

the mid- to late-1990s to today has veered towards areas in which, perhaps, more substantial

improvements could be made. What has come to light during the literature review is that research

progress into relational database theory itself is now almost non-existent given that the underlying

principles are well-understood.

However, the context in which these RDBMSs run has changed significantly. The trend towards

object-oriented programming languages became a de facto standard, so that most development

today is done in languages that are based on OO principles. The repeated calls for further object-

oriented features to be incorporated into RDBMSs [107] fell mostly on deaf ears - object-relational

impedance mismatch meant that large barriers between the two worlds had to be overcome. The

literature review has shown that performance tuning strategies that were sound for database

environments running on known and finite sets of distinct queries are no longer entirely applicable

to queries generated by ORM frameworks; and that providing efficient support for queries

originating from these sources is a difficult and unsolved problem.

- 12 -

Through the review of parsing techniques, some initial exploration of query representation

alternatives using graph theory were tested and found to have an academic pedigree, with related

(but not identical) research into natural language parsing providing some evidence that the idea of

representing queries as directed graphs may be feasible. Some parallels (and distinctions) were

noted between the set-theoretic and graph-theoretic models which have translated into theoretical

barriers for other researchers, and which may impede progress.

3.9 Chapter Summary

This chapter presented several areas of research relevant to the problem of improving relational

database query performance in the context of increased object-relational mapping framework use,

increased volume, variety and velocity of data, provided an overview of both historical and current

enquiries in this sphere. The issue of query performance tuning in the context of database queries

generated by non-traditional sources and several areas of research which may provide assistance in

determining appropriate solutions were examined.

In the next chapter, the steps for exploring the extent of the problem through primary research

using a mixed-methods approach are described and the results from this research are presented.

- 13 -

Chapter 4 - Problem Investigation

4.1 Introduction

It is evident from the literature that there are potential opportunities to improve cost-based

database query optimisers, which still use standard lexicographic parsing techniques and which are

subject to the changing tides of object-oriented mapping frameworks, increased velocity, volume

and variety of data, amongst other anti-patterns. Existing techniques such as indexing,

partitioning and sharding go some way towards improving performance but there is a research gap

in the effective internal representation of queries at the optimiser level and potentially some value

in developing the ideas of Chen [1] in creating truly dynamic schemas, beyond the limits of

materialised views.

This chapter describes the methodology and outcomes of the primary research undertaken to build

upon the findings of the literature review, and to investigate and verify some of the research

objectives.

This chapter first describes our qualitative investigation through surveying practitioners in the field

on their database maintenance and usage experiences. Thematic analysis was used to group and

describe outcomes in a narrative fashion and identified areas for further investigation.

Next, the design and implementation of semi-structured interviews is described to triangulate the

findings from this survey, and information was gathered on database practitioners’ detailed

experiences that helped validate and verify the previous findings, and which suggested several

tangential directions for investigation.

Next, the initial forays are described into proving or disproving the hypothesis that queries

generated automatically from ORM frameworks can be less efficient than queries generated

manually by practitioners, a consequential question that has arisen from the qualitative research

findings. Microsoft SQL Server 2014 is used, a relational database management platform, and a

publicly-available sample database. The findings were presented from this initial set of experiments

at the IEEE International Conference on Consumer Electronics and Computer Engineering 2018

[2].

Finally, this chapter details the experiments to reproduce some of the ORM anti-patterns that our

literature review uncovered and which are described indirectly by our research participants.

Experimental trials were undertaken against a real-life data set; weather buoys situated in the

Pacific Ocean, which provided an interesting multivariate temporal data set upon which meaningful

and lifelike database queries can be tested. The attempts to reproduce these anti-patterns and the

- 14 -

findings were published in the Journal of Database Management, together with the survey findings

[3], from which some of the material in this chapter is adapted.

4.2 Domain Expert Investigation - Survey

4.2.1 Survey investigation

Given the secondary research findings on the extent of the anti-patterns exhibited by object-

relational impedance mismatch (ORIM), actioned by object-relational mapping (ORM) tools, this

section aims to investigate if ORIM presents practical issues, and if so the extent of these issues, by

the administration of a survey focused on object-relational mapping tools, delivered to an audience

of database practitioners. An investigation is mounted as to whether ORM-produced queries and

ORMs in general cause performance issues in real-life database environments.

A survey was designed, piloted and delivered, consisting of 18 questions for an audience of database

practitioners with the intent to investigate several topics: the proportion of respondents who use an

ORM, or use or administer database systems with ORM inputs; an estimation of the proportion of

query traffic to relational database systems originating from ORMs; the experiences of the

respondents in working with ORM query performance tuning, schema management, big-data-fed

database systems and non-relational data stores; the beliefs of the respondents in relation to the

effectiveness, compatibility and integrative ability of ORM tooling; and the opinions of the

respondents on ORM-related paradigms such as object-oriented programming, Big Data, the Agile

software programming methodology; object-relational (hybrid) systems and automation; all

tangential topics which the secondary research findings showed may contribute to the influx of data

and be responsible for the object-oriented programming methodology that warrants ORM use.

4.2.2. Survey design

The questions were structured primarily using Likert scales, with a mixture of qualitative free-form

textual information to gather further details without placing constraints on the responses of the

participants. This approach invited respondents to express their level of agreement or disagreement

with several database-specific statements on a Likert scale with an additional neutral option to

allow null answers to be statistically disregarded.

Delivered via the instant-messaging platform Slack to a database-specific interest group, the survey

returned 19 responses. Relational database performance tuning is very specialist area so the total

- 15 -

available population was expected to be small; n = 19 in these circumstances compromises the

statistical integrity of the output analysis, but the free-form output (open-ended responses to

questions) remains valuable and basic statistical analysis can be indicative of sentiments. Slack was

chosen as a popular platform for specialist communities, enabling the targeting of a particular set of

skilled individuals. Responses were analysed as indicative samples of opinion using qualitative

analysis, with free-text commentary from the respondents treated as significant and central

contributions. The methodology of thematic analysis [4, 5] is used to group the response data into

categories and observations, create themes and formulate summary narratives.

 Checks and balances were built into the survey design. Given that the research questions were

well-defined before the survey was issued, some risk existed that confirmation bias would skew the

results if the questions were put in such a way as to seek affirmation of a pre-defined perspective.

To prevent this possibility, a mixture of positive and negative question forms was used when

positing statements, and at several points, questions were mirrors or alternative phrasings of others

already answered. This use of cross-questioning helped ensure construct and content validity and it

was found to be effective during analysis of the resulting data with few contradictions in the

results.

4.2.3. Survey pilot

Before deployment, the survey underwent a pilot stage after which improvements were made to the

internal consistency of the survey, refinement of the topics and refinement of the terminology based

on feedback from several individuals. The survey was designed to include additional free-form text

fields to ensure the capture of meaningful, context-aware qualitative information to add value,

hence the use of thematic analysis. This approach was successful in uncovering additional

information, useful when constructing the thematic codes.

The survey questions are provided as Appendix A.

4.2.4. Analysis of results

There are several stages of thematic analysis [4], none of which are prescriptive but provide a

coherent process to analysing qualitative data. The survey was designed to capture both

quantitative and qualitative responses and was analysed by using all six stages of thematic analysis,

from data familiarity through to thematic mapping.

The preliminary stage, in accordance with Clarke and Braun’s approach [4], focuses on semantic

analysis – the extraction of the key information about what is said, or written, rather than latent

- 16 -

analysis of the underlying meaning. The responses from the survey were analysed in this way,

resulting in a preliminary codification of the data.

In the next phase, refinement of the codes and re-arrangement of the themes took place to simplify

the findings. This was accomplished by de-duplicating codes, re-arranging them into a different

configuration of themes, and rephrasing the codes to remove unnecessary detail. At this stage,

latent analysis began to take prominence over semantic analysis. Table 4.1 shows the outcome of

this phase.

Table 4.1: Final codification of the survey results

Next, by examining the codification and theme groupings, simplifications and linkages of the

concepts resulted in the interpretative creation of a thematic map. Links are drawn between

concepts to show the interplay of the themes. Fig. 4.2 shows the thematic map with themes as

ellipses, sub-themes as rounded rectangles, and the links and insights associated with them.

- 17 -

Fig. 4.2: Survey outcomes as a thematic map

The final stage was to construct narratives from the thematic map, using the notarised codes as

supporting material. These narratives are presented below, and draw from the codifications,

thematic map and the supporting literature.

4.2.5. Discussion of Findings

• Theme - ORM Use

The results showed that ORM uptake amongst organisations linked to respondents in the survey is

approximately 60% and of those, around 25% of traffic is thought to originate from ORM tools.

Consequently, ORMs are responsible for a sizable minority of query traffic. ORMs are held to be

generally compatible with database scalability designs such as normalisation, but notably

incompatible with some features of the RDBMS, such as re-use of plans within the procedure cache,

good matching with indexes, and adherence to query structures that create efficient execution plans

(such as JOINs).

 The use of ORMs could be evidence that tuning databases and database queries is difficult, with

the path of least resistance seen as the use of ORMs to abstract query design to an interface layer,

although this finding is countered by some evidence from the comments received in the survey that

there are design and interaction difficulties inherent when interfacing with ORMs, backed up with

the paradigmatic differences outlined by Ireland et al. [6]. The difficulties of tuning ORMs are

reinforced by a general perception amongst practitioners (67% detracting views) that this is the

- 18 -

case, alongside the negative consequences (anti-patterns) that arise when using them.

• Theme - Education, Awareness and Perception

There is some evidence of the view that the perceptions of ORMs as being difficult to tune are

reinforced by a lack of awareness of how ORMs operate, or how they are configured, and that

mutually the lack of awareness and education (of both administrative practitioners and users, or

developers) contributes to the misconfiguration of ORMs – 82% of respondents had 3 or more years

of experience, but only a third use ORMs regularly in their roles. There is a widespread perception

that ORMs cause negative performance implications evidenced in both the free-form text responses

and the statistics (no respondents agreed that ORMs were straightforward to tune), with numerous

examples provided, and this could contribute to the minority use of this technology.

The responses suggest that the proliferation of ORM tools is in part consequential to a lack of

awareness amongst the development community of the native tooling available within relational

database management systems; for example, the use of stored procedures as interfaces, or queue-

based messaging systems built into the product suite. However, this view could be biased by a

cultural perception, evidenced in literature [7, 8], of a disconnection between development and

administrative technical communities, manifest by the administrative audience of the survey.

• Theme - N egative ORM Behaviour

 The chief finding was that query anti-patterns are held to be the causes of poor query performance

in the database layer, and that this is exacerbated, with reference to the other themes, by a lack of

awareness in database performance optimisation amongst developers, by lack of awareness of the

native features of RDBMS systems, and by the difficulty of tuning ORM tooling. The exhibited (or

perceived) behaviour of the ORM tools correlated with a generally pessimistic view of the role of

ORMs in the future of database interaction, although contradicted somewhat by support for further

automation. It is noteworthy that although 57% of respondents agreed automation had a role in

the future of database performance tuning, only 8% (2 respondents) agreed that ORMs formed part

of that role.

• Theme - Future Outlook

 Automation of query- and database performance tuning was suggested both by the measured

question responses and by ad-hoc suggestions in free text responses, building on prior work in the

literature addressing more effective database workload management [9]. It was felt that the future

of performance tuning was underpinned by automation, although emphatically not by ORMs. This

- 19 -

suggests that ORMs are perceived to have reached a peak performance level, and that the future of

database interaction may lay in a different direction.

 Several core concepts, such as performance, confidentiality, availability and flexibility were rated

for importance on a scale of 1-10, with 10 as the most important. One notable result was that

performance was rated at 8 out of 10, and flexibility at 6 out of 10, indicating performance to be a

more important issue than flexibility, despite a flexible approach being desirable to deal with ORM-

related queries.

4.3 Domain Expert Investigation - Interviews

4.3.1 Interview context

Three semi-structured interviews were carried out with chosen database professionals to collect

opinions on both the current performance tuning challenges and future directions for database

performance research and implementations.

In keeping with the inductive reasoning approach, these interviews were narrative, in-depth

interviews conducted on loose lines of enquiry derived from the major themes that emerged from

the survey (the triangulation method). Taylor et al. [10] note that this style of interview is, ‘...

modelled after a conversation between equals rather than a formal question-and-answer exchange.’

This is an appropriate style where rapport is established between the participants and non-directed

conversation occurs to bring out opinions and other data for later analysis.

Interview audio was recorded in full and transcribed for analysis. The method of information

analysis was carried out through the extraction of opinions and ideas expressed by the interviewee

using codification, with the assistance of the software package NVivo, and thematic analysis by

hand, and the categorisation of these, alongside the survey output, formed a series of short

conclusions and directives following an inductive narrative analysis approach. The design of the

semi-structured survey, the analysis of the same and the results are discussed below.

4.3.2 Interview design

The survey output indicated four major themes that would be useful to focus upon in the

interviews. Therefore, the interview questions should link to these four themes where possible. In

the table below, loose question definitions are provided, inside three major categories alongside a

map to one or more themes (education/training is integrated across the three major categories).

- 20 -

Performance tuning, as a tangential topic, is also explored (marked as [additional topic] in Table

4.3). These question structures were followed during the interviews.

Table 4.3: Mapping interview questions to survey themes

Category Question Survey Themes

ORMs What do you know about ORM products?

(define if necessary)

ORM Use

What kind of query patterns etc. do you

notice in systems fed from ORMs?

Negative ORM Behaviour

What do you think the general perception is

within the industry around ORMs?

Negative ORM Behaviour / Education,

Awareness & Perception

o Why do you think this is the case?

Negative ORM Behaviour / Education,

Awareness & Perception

Do you think that ORMs will get better over

time?

ORM Use / Negative ORM Behaviour

Do you think SQL is an attractive language

for application developers?

ORM Use

(if appropriate) What specific performance

issues if any have you observed with ORM

systems and SQL databases?

Negative ORM Behaviour

What do you know about ORM products?

(define if necessary)

ORM Use

What kind of query patterns etc. do you

notice in systems fed from ORMs?

ORM Use / Negative ORM Behaviour

Performance

Tuning

In your professional practice, is database or

query performance a hot topic?

Education, Awareness & Perception

What kinds of tuning do you have to bear in

mind (as a developer)

(additional topic)

 o Alternatively, what kind of database-wide

tuning methods do you use (as a DBA)?

(additional topic)

Has tuning become more difficult as your

systems grow?

(additional topic)

Are SQL databases the best solution (in your

opinion) for your applications?

Education, Awareness & Perception /

Future Outlook

How easy do you find it to performance-tune

queries that come from ORMs?

(additional topic)

 o Alternatively, what barriers do you find

when performance-tuning ORM queries?

(additional topic)

Future Outlook What impact do you think Big Data has had

on managing or working with relational DBs?

Future Outlook

What challenges are there around

managing/working with data from the

Internet of Things?

Future Outlook

Do you think relational databases have a

strong role to play in the future?

Future Outlook

What gaps do you think nonrelational

databases play in managing business data?

Future Outlook / ORM Use

Do you believe the role of the database

administrator is over?

Future Outlook

What impact do you think cloud will have on

how we manage data going forward?

Future Outlook

Have relational databases reached peak

performance?

Future Outlook

What changes would you like to see to

relational database systems to enable them to

meet the challenges of the future?

Future Outlook / Education, Awareness

& Perception

- 21 -

4.3.3 Analysis of interview findings

The interviews were recorded with the permission of the participants. Transcription took place

through an AI-augmented speech-to-text engine [11]; then the transcript was analysed by codifying

specific phrases, sentiments and assertions disclosed by the participants into a range of 12 different

broad topics with the assistance of the NVivo software [12]. The frequency on which these topics

appeared is displayed in the graph in Fig. 4.4.

Fig. 4.4: Frequency breakdown of codified survey topics

The phrases or text segments were analysed and associated with each topic. It was determined

that sentiment analysis was not appropriate since the topics are largely technical and factual in

nature; the initial attempt at sentiment analysis (manually) resulted in over 50% of the codified

material falling into a neutral category, and with the relatively low numbers of codified statements,

the risk is run of overfitting the data. Instead, a narrative approach was adopted and for each

category, some selected statements were grouped which indicate a strong sentiment for each

category, and the implications of this are discussed in the following section. These groupings are

presented in more detail in Appendix B.

3.8%

3.8%

17.3%

1.9%

1.9%

12.5%

1.9%

16.3%

2.9%

9.6%

15.4%

12.5%

0% 5% 10% 15% 20% 25%

3 Vs of Big Data

Cloud Data Analytics

Data Analysis

Data Governance

Developers

Future of Data

Miscellaneous

NoSQL

ORMs

Query Accessibility

Query Performance Improvements

SQL

- 22 -

4.3.4 Narrative analysis

In keeping with the pragmatic, inductive approach chosen for the research, qualitative inductive

narrative analysis was selected as an appropriate technique for analysing the interview output.

Although more often used in the social sciences than in the hard sciences, narrative analysis has

been shown by some researchers to be applicable in the latter; this choice emulates the example of

Alvarez and Urla [19] who make a strong argument for the use of narrative analysis in

requirements-gathering for an ERP software installation in applying this to the technical field at

hand.

The inductive approach is adopted of attempting to form an overall picture of the current state of

ORM-driven SQL development and administration issues as reported by the participants with

specific reference to each code above.

SQL

The participants were generally positive about SQL. Echoed in several comments were sentiments

that the language is easy to learn; intuitive; universal; and can result in shorter code than object-

oriented counterparts. There was some evidence that learning more complex structures and

components in SQL is seen as a bar to progress.

Query Performance Improvements

Query performance was viewed and reported by the participants as being a primarily DBA-related

concern; that the database should be performant irrespective of the users’ commands. This was

shown in an example of one particular training session. The participants reported long delays when

working with big data, and organisational frustrations if data analyses were unavailable on demand.

One participant reported on-premise (legacy) servers as ‘feeling a lot slower’.

Query Accessibility

Participants made observations that queries are easily written for many cases; accessibility is less of

an issue than it could be, but with improved training and knowledge the efficiency could be

improved. Observations also included comments that writing SQL in IDE tools doesn’t yield the

expected range of real-time help that one would get in other languages.

- 23 -

ORM s

Participants had a mixed view on ORMs; some participants felt ORMs were unnecessary, that they

felt more comfortable writing queries themselves; another participant reported ORMs as ‘helpful’ in

this regard. Participant knowledge and experiences of ORMs was quite light with most unaware of

them.

NoSQL

Reports on NoSQL and the performance frustrations in working with SQL stores was particularly

evident. One participant complained that they should not be expected to remember the schemata

of a structured database when moving rapidly between different data stores. Others reported that

with the different types of unstructured data in use, using solely relational databases ‘doesn’t make

sense’.

Future of Data

This was a topic upon which all participants had some strong sentiments. Participants expressed

doubt that SQL is particularly popular and pointed out examples where other languages augmented

the capabilities of SQL and, by extension, the relational model. Cloud-based systems were better

able to service their needs in many cases. The view was that traditional relational database

provision should be extended to include non-relational sources and capabilities; however one

participant disagreed, stating, ‘…unless something really dramatically comes and takes away

[relational] databases, I … think they’re here to stay’.

Developers

There was limited data for this code, but the sentiments expressed were that developers are

generally non-expert with SQL and are more used to working with APIs; consequently they needed

assistance writing performant queries without access to APIs e.g. via an ORM.

Data Governance

One particularly incisive comment on data governance was an observation by a participant that

their data structures were by-and-large undocumented; that there is no way of establishing data

provenance, and that governance is lacking. To wit: ‘…I don’t want to use data I’m not going to

trust, or I can’t fully, fully account for the kind of … the lifeline where it’s come from. Because I’d

rather not have the data at all.’ [emphasis added]. This is particularly striking and is one example

of evidence for a gap in data management strategy within organisations; it may also be

- 24 -

symptomatic of the distrust and apathy for relational database management systems expressed

elsewhere.

Data Analysis

Numerous examples were given by participants on how timely data needs to be, and how relational

systems sometimes cannot meet this need. This requirement for timeliness and efficiency was

evident in multiple comments and would appear to be generally indicative of the frustration in

performance efficiency evidenced so far. It was noted that SQL is a comparatively easy language to

learn, and that data analysts generally do not care where the data comes from providing it is

accurate and timely – ‘I don’t want [the database] to take hours for me to get the data that I need’.

One particularly insightful comment noted that companies are only now starting to use data in a

way they have not before; that the value of data is in the use, not the collection. This could point

the way to increased, targeted data collection and demand for data analysts who need efficient and

performant data storage systems.

Cloud Data Analytics

In the most part the view of cloud database systems was positive. Participants noted that

scalability and performance was often better; that the actual location of the data was mostly

irrelevant to them; however, one dissenting opinion expressed concern over ownership and

responsibility for the data if looked after by a third party.

3 Vs of Big Data

Data volume was a theme that re-occurred throughout participants’ responses. It was noted with

specific examples given that large volumes of data correlated with slower performance; that larger

variety of data meant analysts had to use several different systems to get the answers they needed.

Commentary across various codes was indicative that volume, variety, and velocity of data is

constantly increasing, and there is a need to address this.

4.4 Conclusions from Domain Expert Investigations

Triangulating the conclusions from the narrative analysis of the survey output and the thematic

interview analysis, the following conclusions are reached:

- 25 -

• The survey showed ORM use was moderate and held to be compatible with scalability; the

interview output showed mixed opinions with little data to support this view. The

preference of one interview participant to write their own code corresponds with some

observed anti-patterns of the ORM noted in the survey.

• The prolificacy of ORM systems to the lack of awareness in the database and developer

community on the tools and techniques already available in relational database systems are

linked; this correlation is borne out in the interview findings, where it was repeatedly

asserted that developers tend to have basic- to intermediate-level querying abilities, and

that there is a lack of focus on ensuring acceptable performance. This view is echoed in the

literature [7, 8] and indicated by frequent reports of anti-patterns [ibid., and 6].

• Both the survey outputs and the interview outputs agreed that query performance is a

current concern. The survey contraindicated ORMs as a potential solution, whereas the

interview participants expressed little opinion on ORMs in particular; the survey

participants pointed to automation as an answer whereas the emphasis from the interview

participants was scalability and simplicity; both of which are achievable by automation,

especially in data integration and refactoring. Survey respondents rated performance

higher than flexibility, but interview participants rated schema flexibility as a key concern.

Relational database systems appear to be somewhat popular and used extensively with positive

reports from the industry on their efficacy for some use-cases. However, the evidence is that with a

focus on extracting value from data analysis, with an increase in the volume, variety and velocity of

data collected by organisations; with the heterogeneity of data making flexibility of data schemata

difficult to implement and consequently impacting relational database query performance, that

there is more of a need to ensure relational database models are suitable for the changing

requirements of data-driven organisations. Frustrations in the mismatch of relational systems to

the query accessibility required by the developers and analysts within organisations were evident in

both the primary research outputs.

The outcomes exposed highlight a need to improve flexibility and performance as key priorities

within the relational database space; in the next section, some of the performance anti-patterns

noted by the respondents are examined and highlighted, and attempts are made to replicate and

verify the extent to which these can appear in industrial systems.

- 26 -

4.5 Experimental Investigations

Alongside the literature review and the primary qualitative research with industry professionals, it

is sought to determine firsthand through experiment whether the ORM anti-patterns described can

be replicated in current RDBMSs. These suppositions are based on the outcomes of the literature

review and domain expert investigations, particularly that it is expected, based upon these

outcomes, that ORM platforms will exhibit performance anti-patterns when subjected to scrutiny.

This section is split into three subsections – in S.4.5.1, the investigation and outcomes from testing

are presented via analysing the impact of object-relational mapping frameworks through the

investigation of single queries on a sample Microsoft dataset. In S.4.5.2, more comprehensive

testing of ORMs vs. traditional queries is presented by using a real-life data set (sensor data from

Pacific Ocean seaborne buoys). Finally, the experimental outcomes are summarised in S.4.6.

4.5.1 Investigation of traditional queries vs. ORM frameworks

In this section, the ‘Contoso University’ Entity Framework example provided by Microsoft

Corporation [13] is used against the Microsoft SQL Server 2014 RDBMS platform to seek to

replicate and illustrate selected adverse effects caused by ORM-generated queries, as informed by

the literature review and indicated by the qualitative primary research. In the context of a

University, the following operations occur: add a student; list students; edit a student; search for a

student; delete a student; and analyse the SQL generated by these processes. The application is

based on the MVC design pattern with the ORM acting as the database interface. The outcomes

are then examined to determine any suboptimal behaviour displayed by the ORM and, where

possible, show how any performance concerns can be mitigated by a non-ORM approach, or by

tuning the database or ORM.

It is important to note that for reasons of space, this demonstration is scoped to focus on some

issues that emerge from single-row database calls. It is not intended, for example, to demonstrate

the N+1 problem or show how ORM queries can fill the plan cache.

Adding a student

To begin, the first action is to add the student John Smith, together with their enrolment date, to

the database of students using a straightforward web form. In the background, the ORM generates

an INSERT statement. Notably, this statement is parameterised (the literals are passed as @0, @1

etc). An interesting point is that the student was inserted into the Person table, not the Student

table, and consequently the hire date is set to NULL since it does not apply. The ‘Discriminator’

field is also interesting as it is not set by the user of the web application – when the table contents

- 27 -

are manually checked, it is observed that ‘Discriminator’ was set to ‘Student’. This points to

problems with the database design, but in terms of the SQL statement itself, it is correctly

parameterised and does not display any performance problems.

INSERT [dbo].[Person]

 ([LastName], [FirstName], [HireDate], [EnrollmentDate], [Discriminator])

VALUES (@0, @1, NULL, @2, @3)

Getting a list of students

In this example three more students have been added to make four in total. The generated SQL

is the code used to fetch this list – there are three items of data for each student, their last name,

first name and enrolment date.

SELECT TOP (3)

 [Project1].[C1] AS [C1],

 [Project1].[ID] AS [ID],

 [Project1].[LastName] AS [LastName],

 [Project1].[FirstName] AS [FirstName],

 [Project1].[EnrollmentDate] AS [EnrollmentDate]

 FROM (SELECT [Project1].[ID] AS [ID], [Project1].[LastName] AS [LastName],

[Project1].[FirstName] AS [FirstName], [Project1].[EnrollmentDate] AS

[EnrollmentDate], [Project1].[C1] AS [C1], row_number() OVER (ORDER BY

[Project1].[LastName] ASC) AS [row_number]

 FROM (SELECT

 [Extent1].[ID] AS [ID],

 [Extent1].[LastName] AS [LastName],

 [Extent1].[FirstName] AS [FirstName],

 [Extent1].[EnrollmentDate] AS [EnrollmentDate],

 '0X0X' AS [C1]

 FROM [dbo].[Person] AS [Extent1]

 WHERE [Extent1].[Discriminator] = N'Student'

) AS [Project1]

) AS [Project1]

 WHERE [Project1].[row_number] > 0

 ORDER BY [Project1].[LastName] ASC

Considering this data comes from the Person table, a shorter, and potentially more optimal SQL query

can be assembled:

SELECT TOP 3 LastName, FirstName, EnrollmentDate

FROM Person

WHERE ID > 0 AND Discriminator = ‘Student’

ORDER BY LastName ASC;

- 28 -

Note this differs significantly from the query generated by the ORM tool, which displays certain

characteristics: unnecessary column fetches (eager fetching), namely ‘CU1’ and ‘ID’; unnecessary

nesting; unnecessary sorting (the inner ORDER BY ID is overridden by the outer ORDER BY

LastName); and poor alias names, decreasing the readability of the query. Even if a subquery was

necessary, this could have been achieved by an explicit JOIN rather than potentially requiring the

parsing of another query.

Now the execution plans of the ORM-generated query and the query proposed are compared to

analyse the impact. These execution plans are shown in Figs. 4.5 and Fig. 4.6:

Fig. 4.5: Execution plan for the ‘list students’ query

- 29 -

Fig 4.6: Execution plan for the non-ORM query for listing students

It is evident that the query optimiser has many more steps to execute the query. However, the

optimiser has also recognised the simplicity of the queries, and this is reflected in the costs and

resources used to execute them. Particularly, in addition to the comments above on the query syntax:

• The ORM query occupies 32KB in the plan cache against the proposed query at 24KB. At

scale, this occupies plan cache space that could be used by other queries, negatively affecting whole-

system performance.

• The ORM query underestimates the number of rows which will be returned whereas the

proposed query is accurate. This can be an issue in generating well-performing execution plans at high

volumes. Similarly, the estimated row size is inaccurate. Using database statistics with the ORM

query could help remedy this situation.

• The ORM query uses an index scan whereas the proposed query uses an index seek. While

this makes no difference in the case of low data volumes, this scales badly, with seeks on an index

occupying much fewer resources than scans in every case.

- 30 -

Editing a student

In this example student details are edited, changing the last name and enrolment date for a single

student. The output is, like the exercise in adding a student, parameterised correctly, with a simple

and effective UPDATE statement. In terms of performance this is an optimal query and so needs no

rewrite.

UPDATE [dbo].[Person]

SET [FirstName] = @0, [EnrollmentDate] = @1

WHERE ([ID] = @2)

Searching for a student

 In this case, there are two queries executed. The first query fetches the count of results, and the

second query is an adaptation of the query to fetch all students.

SELECT

 [GroupBy1].[A1] AS [C1]

 FROM (SELECT

 COUNT(1) AS [A1]

 FROM [dbo].[Person] AS [Extent1]

 WHERE ([Extent1].[Discriminator] = N'Student') AND (([Extent1].[LastName]

LIKE @p__linq__0 ESCAPE N'~') OR ([Extent1].[FirstName] LIKE @p__linq__1 ESCAPE

N'~'))

) AS [GroupBy1]

SELECT TOP (3)

 [Project1].[C1] AS [C1],

 [Project1].[ID] AS [ID],

 [Project1].[LastName] AS [LastName],

 [Project1].[FirstName] AS [FirstName],

 [Project1].[EnrollmentDate] AS [EnrollmentDate]

 FROM (SELECT [Project1].[ID] AS [ID], [Project1].[LastName] AS [LastName],

[Project1].[FirstName] AS [FirstName], [Project1].[EnrollmentDate] AS

[EnrollmentDate], [Project1].[C1] AS [C1], row_number() OVER (ORDER BY

[Project1].[LastName] ASC) AS [row_number]

 FROM (SELECT

 [Extent1].[ID] AS [ID],

 [Extent1].[LastName] AS [LastName],

 [Extent1].[FirstName] AS [FirstName],

 [Extent1].[EnrollmentDate] AS [EnrollmentDate],

 '0X0X' AS [C1]

 FROM [dbo].[Person] AS [Extent1]

 WHERE ([Extent1].[Discriminator] = N'Student') AND

(([Extent1].[LastName] LIKE @p__linq__0 ESCAPE N'~') OR ([Extent1].[FirstName] LIKE

@p__linq__1 ESCAPE N'~'))

) AS [Project1]

) AS [Project1]

 WHERE [Project1].[row_number] > 0

 ORDER BY [Project1].[LastName] ASC

- 31 -

The difference between the listing and the search is an addition of another WHERE filter in the inner

SELECT:

… AND (([Extent1].[LastName] LIKE @p__linq__0 ESCAPE N'~') OR

([Extent1].[FirstName] LIKE @p__linq__1 ESCAPE N'~'))

Where the test was simply to search for the string ‘Smythe’, the clause constructed uses the LIKE

operator instead of the equals operator, specifically escaping the ~ sign (including it in the LIKE

query). This implies the search would work for substrings also. There are also two parameters,

@p__linq__0 and @p__linq__1. It is difficult to see what these parameters were, but by looking

at the properties of the SELECT component of the execution plan, it is determined that they are both

equal to ‘%Smythe%’.

There are three issues here: first, that both parameters were identical, increasing the complexity

of the plan when one would do (there are two since they map to first and last name, but there is only

one input field). Second, that the data was wrongly typed with a 4,000-character maximum. Third,

that the ESCAPE clause was unnecessary since the string did not contain a tilda.

The SQL may be rewritten like so:

DECLARE @searchString VARCHAR(255) = 'Smythe'

SELECT LastName, FirstName, EnrollmentDate

FROM Person

WHERE Discriminator = 'Student'

AND (LastName LIKE ('%' + @searchString + '%')

OR FirstName LIKE ('%' + @searchString + '%'))

ORDER BY LastName ASC;

Let us now examine the simplified execution plans (Figs. 4.7 and 4.8, below):

Fig 4.7: Execution plan for the ORM search query

- 32 -

Fig 4.8: Execution plan for the non-ORM search query

As when listing students, these plans are significantly different, and the same criticisms of the ORM

query for getting a list of students apply here. However, the addition of the search predicate has

altered the main operator in the proposed plan from a seek to a scan, since no appropriate

supplementary index aligned with the FirstName or LastName columns exists, and the search predicate

is bracketed with wildcards precluding an alphabetic scan. It is also unclear whether the Contoso

search facility is deliberately designed to use wildcards or whether this behaviour is added by the ORM

– if the latter, this is a worrying development since this does not reflect the original intent of the

developer.

Deleting a student

As with the UPDATE statement when editing a student, deleting a student is also a streamlined

process with an optimal query generated.

DELETE [dbo].[Person]

WHERE ([ID] = @0)

The performance can be tested, in terms of time and number of read operations, of each task that

has been demonstrated. The results are shown in Table 4.9.

- 33 -

Table 4.9: Performance statistics for Contoso queries

Task Source
Logical

reads

Physical

reads

Parse /

compile

(ms)

Elapsed

(ms)

Add
ORM 2 0 0 13

Non-ORM - - - -

List
ORM 2 0 6 135

Non-ORM 2 1 3 53

Edit
ORM 2 0 4 0

Non-ORM - - - -

Search
ORM 1 4 4 290

Non-ORM 2 0 1 118

Delete
ORM 19 0 7 19

Non-ORM - - - -

It is noted that the performance differences are as pronounced as the differences between the query

syntax structure and more so than the differences in the execution plans. From the table above, there

is a significant difference in query duration between each ORM and non-ORM query pair for operations

based on SELECTs – 135ms/53ms and 290ms/118ms.

Although it is recognised that the examples used here would need to be scaled to a real-world context,

these results are indicative of slower performance for the ORM query. There is also a small but

noteworthy difference in the time taken to parse and compile with the larger plans (ORM) taking

longer to compile – 6ms/3ms and 4ms/1ms.

In summary, the observed negative behaviour of the ORM from this demonstration can be

characterised as follows. Suggested mitigations in italics are supplied for each characteristic but note

that these mitigations will in most cases require human intervention, which in turn requires an

examination of the SQL generated by the ORM tool:

• Eager fetching of unnecessary columns (CU, ID)

 o Fetch only the columns necessary for the query

• Unnecessary nesting (subqueries)

 o Avoid sub-querying unless necessary, use WHERE conditions or JOINS instead

• Additional sorting (inner ORDER BY)

 o Do not use inner ORDER BY unless also using TOP / LIMIT

• Poor code readability (particularly aliases)

 o Use aliases only when syntactically required

• Poor mapping of parameters to literals (search criteria)

 o Use a one-to-one relationship between input parameters and SQL parameters

- 34 -

• Larger execution plan size, decreasing size of plan cache for all queries (32KB/24KB,

40KB/32KB)

 o Strive to simplify queries to lower the size of the plan

• Unnecessary SQL constructions (nesting, ESCAPE operator)

 o Only use the minimum structures and operators to accomplish the goal

• Duplicate code (when fetching a count of rows and the row contents)

 o Use functions such as ROWCOUNT or count the rows in the application

• Apparently slower performance both during parse/compile and execution phases

 o Simplification of the query will lead to simplification of the execution plan

4.5.2. Investigating query anti-patterns using Pacific Ocean sensor data

The purpose of these experiments is to triangulate upon the findings of the survey, particularly

around the finding that practitioners experienced performance issues when dealing with ORM-

generated queries. This section investigates whether ORM tools may generate queries which have

adverse performance effects when compared to queries written by a subject matter expert.

Test Data

For testing, the El Nino data set from the Pacific Marine Environmental Laboratory in Seattle,

Washington, USA [14] was chosen as it contains a selection of multivariate data that lends itself to

reformatting without loss of integrity and is recognised as a benchmark data set used for data

mining [15], ensuring repeatability and falsifiability. This data set contains weather data readings

recorded by a series of 70 buoys spread across the Atlantic Ocean between 1980 and 1998 and is

presented as a single comma-separated values file with 178,080 rows and 2,136,960 data points

spread across 12 attributes.

Configuration M ethodology

Data were imported from a comma-separated format to a single table in Microsoft Azure DB, then

normalised to 3NF to provide the advantage of simulating multi-table queries, and each column

was assigned an appropriate data type. For the ORM layer, Python was configured with the

Django web framework which includes the ORM tool Django ORM. The package django-pyodbc-

azure was used for Azure DB database connectivity and a new model was generated from the 3NF

- 35 -

schema. A new property and function were created for the distance measurement required by one of

the query objectives, detailed in the discussion of query objective O5.

Aim, Objectives and Variables

The aim of this set of tests is to examine the differences between queries generated by a subject

matter expert and queries generated by an ORM tool, and note which, if any, structural anti-

patterns [6, 16] are observed.

The objectives of this experiment were to determine whether:

1) The performance of ORM-generated queries tends to be inferior to manually-written

queries when comparing execution speed, resource consumption and execution plan

complexity;

2) ORM-generated queries demonstrate poorer relational query construction than queries

constructed by a subject matter expert; specifically, whether ORMs tend to generate

queries which have redundancies, are loop- rather than set-based, or display other

inefficient characteristics as detailed elsewhere in the literature.

The evaluation criteria used were based upon quantifiable and measurable instruments and were

chosen as accurate representations of how queries are assessed by professionals [17]. Each criterion

is composed of an independent variable (‘measure’) whose value changes upon the manipulation of

the dependent variable, and a description indicating how the criterion should be assessed

(‘comparative rule’). The criteria are also defined and described fully in Fritchey [17] and these are

summarised in Table 4.10:

- 36 -

Table 4.10: Measures (independent variables) to compare the efficiency of queries

M easure Definition Comparative Rule

Cached plan size (B) The size of the cached plan in bytes. Smallest plan

Total plan cost Relative measure expressed as a real number. Lowest plan cost

Compile time (ms) Time in milliseconds to compile the plan

(ready for execution).

Shortest compile time

Memory used during

compilation (B)

Memory that was used (B) to compile the

plan.

Lowest memory use

Memory required (KB) Memory that was required to execute the

query (KB).

Lowest memory use

Memory requested (KB) Memory that the query optimiser requested to

be reserved to execute the query (KB).

Most accurate (to Memory Required)

Total execution time

The time taken, in ms, between the query

being executed and the return of the result

set.

Shortest execution time

Total count of queries

The total number of separate SQL queries

required to achieve the object.

Fewest number of queries

The validity of objective 2, whether ORM-generated queries exhibit anti-patterns, is addressed

through the comparison of each SQL query pair, noting any anti-patterns that emerge, cross-

referencing against the performance analysis where appropriate and sources of query anti-patterns

in the literature, and cases where query functionality is missing in the ORM.

The objectives represent queries against the data and are rendered firstly in English, then as a

relational SQL query written by a practitioner; as a Django ORM method call; and as one or more

relational SQL queries produced by Django ORM as a result of the method call. For brevity, these

are listed in Appendix C.

The non-ORM generated queries were written to meet the query objectives before using Django

ORM to generate queries that would meet those objectives. The underlying database objects via

the Django ORM were accessed by opening a Django shell in Python then calling the methods in

the models module of the new application and tracing the queries against the database using a

profiling tool. This enabled the comparison of the manual database queries with the ORM queries

to determine if there were any differences which might impede performance.

- 37 -

Experimental Results

Table 4.11 shows how the manual SQL (non-ORM) queries compare with the ORM-generated

queries for the seven independent variables used as measures.

Note that due to random fluctuations in the compile time and total execution times that were

outside the control of the experiment (including network latency to the database server; worker

availability on the CPU scheduler; and memory allocation delays) a total of ten executions, with

forced recompilation to avoid plan re-use, for each test were conducted to mitigate these effects and

the mean average results (denoted as μ) are shown. Where there are multiple queries, the sum of

the iterations are given under each measure heading.

Query Objective O1

The queries were non-identical. The ORM tool produced a near-identical structural query but with

the addition of an explicit CONVERT() operation on the airTemp column. This conversion was not

required since the column was already stored in the FLOAT datatype. This difference was absorbed

by the query optimiser ignoring the conversion request which resulted in identical query plans.

Anti-pattern(s): Redundant code

Query Objective O2

Note that aggregate() returns a dictionary object, not a QuerySet object. The annotate() method is

not suitable when there is no column to group by.

The queries were structurally identical with very small differences in the alias names and

whitespace. This was reflected in the identical query plans, although the ORM-generated version

took slightly longer to compile and execute, possibly due to a minute addition to the delay in the

parsing stage by the different syntax.

Anti-pattern(s): None

Query Objective O3

The queries were structurally similar, with aliasing differences and transposition of the predicates in

the WHERE clause. Although different query plans were used, their key metrics were identical. Of

small note is how the ORM tool generated needless syntax (brackets) and did not alias the

columns. Execution time was inconclusive, with the non-ORM version registering a longer execution

time but the ORM version taking longer to compile.

Anti-pattern(s): Redundant code

- 38 -

Query Objective O4

Django ORM does not support the creation of Cartesian (CROSS) JOINs against the data model.

Instead, a more creative solution is required. The mean average and standard deviations of the data

were collected and stored as dictionary entries in memory, then the main query results similarly.

The isAnomalous column of the main results was updated depending on the average and standard

deviation values, and whether the data was missing (NULL). This overcame practical difficulties

working with the NoneType (NULLable QuerySet column) when trying to convert to float.

However, for a fair comparison to the SQL version, the time taken to update this QuerySet in

memory was added. Consequently, the ORM equivalent became a three-step process.

Table 4.11. Results from ORM-generated and manual query performance testing

The queries and subsequent plans produced for this query pair were extremely divergent. Due to

lack of full ANSI-SQL syntax support (identified here and indirectly by Ireland et al. [6]), the

approach needed to solve the problem and the consequent queries produced were correspondingly

- 39 -

different. The ORM-generated query also demonstrated a redundant CONVERT(), as in objective

O1, but did demonstrate use of the native query preparation tools to handle the parameters and

avoid storing the values with the compiled plan, which would increase the likelihood of parameter

sniffing in future iterations and consequently skewed data affecting plan efficiency. As shown by the

performance measurements, the ORM-generated query displayed significantly worse performance in

many terms.

Anti-pattern(s): Lack of full ANSI-SQL syntax support, redundant code, multiple queries

Query Objective O5

The database query is too complex for the Django ORM to replicate directly, since it doesn’t

support CROSS JOIN and there is limited support for the COS, ACOS, SIN and ASIN functions.

Instead, the ORM was used to extract the location data, which was consumed recursively by

iterating over each row in the location data for each row in the query set, effectively recreating a

CROSS JOIN. The distances CTE was then compiled using a custom distances() function in the

class definition using methods from the math module to implement the logic. Finally, the max

aggregation of the output of this function was returned to the console.

This set of calculations is an implementation of the spherical law of cosines, scaled for miles, to

calculate distance between two points on a sphere [18]. This was used to accurately measure

distance while taking into account the curvature of the Earth.

Observations included 1,156 individual INSERT queries ran in place of a single INSERT, the

splitting up of the query into multiple queries, double writes to the database, redundant code and

implicit conversion issues. Although some metrics such as plan size were smaller than non-ORM

generated queries, the query execution time for the ORM query was more than 300x that of the

non-ORM query.

Anti-pattern(s): Multiple queries, N+1, implicit conversion, redundant code, lack of ANSI-SQL

support

Discussion

The results are assessed against the evaluation criteria as follows. For each criterion, the two

results – for the ORM-generated query, and for the non-ORM generated query – are compared

using the condition for the criterion specified in the ‘Comparative Rule’ column (Table 10). If the

non-ORM result meets the condition, a score of -1 is assigned. If the ORM result meets the

condition, a score of 1 is assigned. If the condition cannot be applied as both results are equal, 0 is

assigned.

- 40 -

For illustration: For the criterion Total Execution Time (ms), the comparative rule is Shortest

execution time. The results obtained for this criterion across the 5 query objectives were as follows,

in the format Non-ORM/ORM: 1482.0/1484.0, 537.6/596.4, 449.0/572.2, 1942.4/1829.8 and

98.0/32441.0. So, for each pair, the smallest value is found, and the appropriate score assigned.

Comparing each pair, the scores are assigned as described: -1, -1, -1, 1, -1. Summing these scores

yields -3. Consequently, the score for this criterion across all query objectives is -3.

In Fig. 4.12, the scores for all 7 criteria are presented using this scoring mechanism. Negative scores

are associated with non-ORM generated queries, positive scores with ORM-generated queries and

zero scores with neither category. For every evaluation criterion, the results showed that non-ORM

generated queries outperformed ORM-generated queries using the definitions of the respective

comparative rules.

Fig. 4.12: Total Score by Evaluation Criterion

The data can also be presented pivoted by query objective (O1 to O5). For this analysis, the same

scoring mechanism is used but instead of assessment solely by evaluation criterion, the assessment

is by query objective, which helps illustrate the relationship between query complexity and

superiority of method. The comparative rules of the evaluation criteria are used to assign scores, as

before.

For illustration: For query objective O4, each pair of results is assessed against the respective

comparative rules. The results are in the format Non-ORM/ORM: 96/128, 5.24644/5.25825,

17.4/24.2, 776/856, 3712/5704, 3712/5704, 1942.4/1829.8 and 1/2. The comparative rules for each

can be summarised as ‘find the smallest value’, and so for each pair the smallest value is found, and

- 41 -

the appropriate score assigned: -1, -1, -1, -1, -1, -1, 1, -1, which sums to -6. Therefore, the score for

Objective O4 across all criteria is -6.

The scores for the query objectives across all evaluation criteria are illustrated in Fig. 4.13. There is

a correlation between query complexity and score – query objective O1, a simple query, had better

overall performance when generated by an ORM than otherwise. Query objective O4, a complex

query, had significantly better performance when generated by a non-ORM method than by the

ORM, with only one evaluation criteria rating the ORM as better-performing.

Fig. 4.13. Total Score by Query Objective

However, query objective O5 shows a neutral result despite the complexity of the query, and the

reason is that the number of evaluation criteria that favoured non-ORM generated queries was

equal to the number favouring ORM-generated queries, so no clear determination can be made.

This highlights a weakness in this analysis approach –each criterion is given equal weighting in the

scoring despite extremes in the data and comparative importance of each criterion. Query execution

time can be thought of as a strong desirable trait in query performance outcomes, perhaps more so

(from the user’s perspective) than plan cost or memory use, and an equal weighting for all criteria

obfuscates this view. This weakness can be overcome by drawing upon the data in detail. Fig. 4.14

illustrates the relationship, drawn from the results between mean total execution time and query

objectives, or complexity (where O1 is least complex and O5 most complex).

- 42 -

Fig. 4.14: Correlation between increasing complexity and execution time of ORM methods

This result shows that there is a generally positive correlation between complexity of query and the

time taken to execute the query derived by the ORM-generated method, even if the result from O5

as an extreme outlier is excluded.

Performing t-testing on the observations of the mean execution time across the query objectives,

this analysis is borne out by the p-values obtained for all the observations. Table 4.15 shows that in

these t-tests, p > 0.05 (highlighted). This does not support the conclusion that there is a significant

uplift in the execution time of the ORM-generated queries than the non-ORM generated queries as

complexity rises, although other statistical measures such as mean average do support this case.

Table 4.15: p-values from t-testing of mean execution time observations

 Non-ORM ORM

Mean 901.8 7384.68

Variance 600811.08 196496129.3

Observations 5 5

Hypothesized Mean Difference 0

P(T<=t) one-tail 0.180

P(T<=t) two-tail 0.360

- 43 -

In general, the results showed that as query complexity rose, ORM-generated queries incurred

performance penalties across multiple evaluation criteria and started to exhibit performance anti-

patterns referenced in the literature

[1, 16].

The scope of the investigation was over a relatively small data set of three tables. The results,

showing divergence across many of the performance measures between both ORM-generated queries

and non-ORM generated queries, are likely to diverge further as the complexity of the database

schema and the amount of data involved increases, a conclusion supported by the evidence from the

survey detailing performance deficits in ORM tools from database practitioners.

4.5.3 Conclusions from the experimental investigations

It is concluded that the evidence of query performance anti-patterns arising from ORM-generated

queries is tangible, and that this phenomenon occurs for a variety of reasons. It was determined

that there is a correspondence between the effects described in the technical literature and real-life

measurable effects on query performance, particularly as queries grow more complex, although it is

noted that ORMs can produce simplistic database queries that perform on a par with traditional

database queries, and that current mitigation strategies such as parameterisation are largely

unaffected, except where unused within the ORM configuration. It was found that, at scale, such

effects characterise a slowdown in overall performance as the impacts of slower individual query

executions cause cumulative performance effects. This was demonstrated both though individual

example, and example en masse, and that the findings in this area have been peer-reviewed.

4.6 Chapter Summary

In this chapter, the survey instruments used to investigate current perceived weaknesses in

relational database query approaches and other associated topics were detailed; this included the

piloting and administration of a questionnaire to an audience of practitioners, the results from

which were analysed thematically and combined with the output of a short series of expert

interviews. Strong evidence was found that relational database performance and schema flexibility

are ongoing current concerns, given the increase in the velocity, volume and variety of data; both in

size and types; and that there is doubt among practitioners on the ability of ORMs to provide the

scalability and robustness required to address these needs. It was found the move to NoSQL (non-

relational) database systems to be driven by, at least in part, the perceived inflexibility of relational

queries and concerns over the timeliness of results generated by data analysts.

- 44 -

It was further examined exactly what undesirable effects can be replicated within relational

database systems by conducting two experiments; the first, to examine whether queries written

manually tend to outperform ORM-generated queries, and the second, to determine whether query

anti-patterns mentioned by the participants and elucidated in the literature can be reliably

reproduced against a real-life data set. Strong evidence was found that in some cases, ORMs fall

into some evident anti-patterns, particularly the N+1 problem, nested queries and poor cached plan

re-use due to excessive recompilations. It is noted that these issues have a direct negative impact

upon performance, correlating to the sentiments of the survey participants.

In the next chapter, the proposed solution is detailed, incorporating three major components; first,

a new internal query representation to replace semantic text parsing and plan cache storage with

queries instead stored in multidimensional matrices, computable and comparable; second, a new

comparison mechanism for said matrices, using the k-nearest neighbour algorithm; and third, a new

proposed method for set representation in the relational model using dynamic schema redefinition

with roots in the Zermelo-Fraenkel axiomatic schema of separation. This framework is dubbed

PETAS: PErformance Tuning for Adaptive Schemas.

- 45 -

Chapter 5 - Solution Design

5.1 Introduction

This chapter introduces Performance Tuning with Adaptive Schemas (PETAS), the proposed

design approach for solving some of the problems illustrated in previous chapters in the field of

database query performance tuning. Specifically, this chapter seeks to address improving ORM

query performance through introduction of a new method to group and compare queries by set

construction, rather than as narrative text; through using this new representation to introduce

better query comparison techniques, reducing recompilations on the query plan cache, a notable

feature of ORM-generated queries; and through the introduction of a dynamic schema redefinition

method to reduce the number of accesses required to service data queries and enable the flexibility

and scalability demands of database users.

5.2 Context

Since the inception of relational database systems, the principal programming paradigm has

gradually shifted to Object-Oriented Programming Languages (OOPL) [1, 2, 3], where objects are

created and destroyed during normal application workflows and consequently database queries are

generated when needed, rather than called from a query library or stored procedure. This use of

object-oriented application development caused a clash between the object and the relational

model, a problem known as object-relational impedance mismatch [4, 5]. Essentially, this is a

structural incompatibility between the characteristics of an instance of an object and the data

stored in a relation, such that the data in the table cannot be stored as attributes in the object on a

permanent basis but must be populated via query.

In response to this mismatch, intermediary ORM software agents were developed which include the

automatic generation of queries using a supplementary object-relational map, allowing developers to

call a method rather than write queries directly. These tools have various restrictions which limit

the use of conventional relational query tuning mechanisms – for example, a propensity for nesting

rather than joining, row-by-row (also known as N+1) query patterns, and eager fetching [6, 7].

These issues could be overcome with careful query tuning, but unlike traditional non-ORM queries,

ORM queries are generally inaccessible for rewriting as they are generated at runtime and not

stored inline, nor stored as functional code blocks like stored procedures. This can present

significant difficulties when tuning for system-wide database performance since there is little control

over the query execution.

- 46 -

Fig. 5.1, derived from Delaney [8], illustrates the typical query execution lifecycle in an RDBMS.

Fig.5.1: The query execution lifecycle (derived from Delaney [8])

In the proposed solution, the goal is to improve elements 1), 2), 3), 8) and 9) from Fig. 5.1.

5.3 Solution Overview

This section introduces PETAS, Performance Tuning with Adaptive Schemas, the proposed

solution to the problem of tuning queries that are not accessible to relational query tuning

mechanisms. PETAS is designed to complement existing strategies such as index maintenance,

data archival, tuning system parameters, and application of best practices in storage architecture.

This chapter describes the theoretical underpinnings, the components of PETAS and discuss the

construction and results from testing a proof-of-concept implementation in PostgreSQL.

PETAS is based on the concept of multiple logical representations of data mapped to the physical

data. The idea of multiple logical representations of data is not new, and already exists at the

object level - indexes, views and partitions of data augment physical data structures and support

query performance [9, 10, 11]. However, no such implementations exist at the whole-database level,

although some theoretical work has been done on using multiple schemas [14] and schema

integration [15, 16]. The use of multiple logical representations of data allows dynamic redefinition

of the structure of the data to suit the inbound query flow, with the ongoing creation and

destruction of secondary schemas depending on how well they perform against the context of a

constantly-variable query flow. This allows the physical data pages to have more than one direct

mapping to a logical schema object. Querying these different schemas with functionally equivalent

(albeit syntactically different) queries would result in the same data being returned.

- 47 -

In current RDBMS implementations, tables are mapped to data pages either through primary

indexes, which are B+ tree representations of the data together with pointers arranged in a tree or

stored in heaps – unstructured collections of data pages. Both can be overlaid with secondary

indexes consisting of an array of pointers of which there are various types. However, indexes of any

type are only applied to individual objects – tables or materialised views. The multi-schema

approach would consist of schemas containing only whole-database indexes, with the data stored

once in a base schema in the normal B+ tree format and alternative schemas constructed of whole-

schema index representations incorporating not only the individual objects but their relations, keys

and other supplementary structures.

The use of multiple schemas is supported by a simple machine learning classification algorithm, K-

nearest neighbour. The purpose of the classifier is to map each inbound query to an individual

schema at runtime, depending on the structure of the query and to assess the prior performance of

similar queries against the secondary schemas. This feedback is used to improve the accuracy rate

of the classifier over time by monitoring and learning from the performance metrics of the query

flow. In the proof-of-concept, it is demonstrated that this approach is not only viable, but that

queries can be classified to different schemas effectively, and that query classification results in real

and measurable performance improvements in query execution time when compared against the

same queries run against a single base schema. Results are also demonstrated that indicate that

the query-to-schema classifier improves in accuracy over time by learning which schemas are best

suited for different schema types, through the constant self-refinement of the classifier’s own

metadata.

There is little prior work in the literature on either multiple-schema models or the integration of

artificially-intelligent methods for relational query performance tuning, and with effective data

management increasingly important in a 'big data' culture [17, 18] and the continuance of the

object-relational impedance mismatch challenge, the time is right for new research into how

relational database tuning methods can be further developed.

5.4 Principal PETAS components

PETAS is a process split into two sections, the synchronous section which executes during the run-

time of a query, and the asynchronous section which conducts operations outside the query

execution process. The synchronous section is comprised of 5 ordered steps – the matrix parser, the

scoring mechanism, the KNN selector, the schema classifier and the query mapper, the output of

which feeds into the normal relational query execution cycle. The asynchronous section comprises

of the metadata update process and the schema mutator. All these components are related and

their position in the normal course of query execution is illustrated in Fig. 5.2:

- 48 -

Fig. 5.2: Overview of PETAS

PETAS starts at the point that a query, Q, is received via the application from a user. Q is a valid

database query against the base schema, Sb. The overall goal is to find the schema Sn (from a

range of available schemas including the base schema Sb) for Q so that Q executes in the least time

and consumes the least resources in comparison to all other available schemas. In the first step,

PETAS deconstructs the query into a structure called a multi-dimensional adjacency matrix, which

is a binary matrix in three dimensions describing connections between the components (columns,

relations, parameters) within the query. In the second step, PETAS compares this matrix against

the matrices of previously-executed queries and attempts to isolate K number of previously-run

queries (Q1 … Qk) structurally-similar to Q from the PETAS metadata cache using the K-nearest

neighbour (KNN) algorithm. In the third step, PETAS looks up the previous schema assignations

of these ‘neighbours’ (queries Q1 … Qk) and fetches the majority verdict. This verdict is

determined by asking, of all (Q1 … Qk), which schema choice in (Q1S … QkS) occurred most often?

This schema is Sn. In the fourth step, as Q is only syntactically valid against Sb, Q must be

mapped to a new query Q’, which is a representation of Q that is syntactically valid against Sn.

Finally, in step five, the query Q’ is sent to the normal query process (parser, algebriser, optimiser

and executor) supplied within the RDBMS.

The principal components of the synchronous operations of PETAS are the matrix parser,

responsible for representing the query in the form of a multi-dimensional adjacency matrix; the

- 49 -

scoring mechanism, responsible for comparing two queries and producing a measure of similarity;

the KNN selector, responsible for choosing the K-nearest neighbouring queries to the query being

assessed (nearest-neighbour can be construed as ‘closest in structure’); the schema classifier, which

uses the outcome of the KNN selector to assign the query to a schema; and the query mapper,

responsible for syntactic redefinition of the query to match the chosen schema.

Other asynchronous functions feature alongside this critical path. First, query metadata is stored

in a metadata cache. This cache is used only by the PETAS process and stores performance

metadata, query weightings and definitions. The update process is asynchronous so as not to

interfere with query processing. The other asynchronous process is the schema mutator, responsible

for both the creation of new schemas through query assessment, and destruction of under-used

schemas.

The alternative query representation and similarity scoring processes are structured together into

six distinct steps, which are shown in Fig. 5.3. Dynamic schema redefinition is dealt with

separately as it is both disparate and asynchronous to real-time query processing.

Fig. 5.3: Illustration of the alternative query representation process

Parsing: Using linear tokenisation, the query is split into distinct atomic elements. Each element

is classified as either an object or an operator. Operators act upon objects and link two objects

together. The produced set of object-operator-object relationships are separated into ordered pairs

(tuples) such that there are a set of object-object tuples with the left-side object the object acting

upon and the right-side object the object acted upon. An object may consist of other operator-

object tuples; in which case the object is a unique reference to another object-object pair. Each

tuple includes the operation upon the objects as a third value, so a tuple has exactly three

members. Operators can include the primitives =, >, <, >=, <=, != but also include implicit

operations such as ‘member of’ and complex operators such as ‘ON’ or ‘LIKE’. The type of

operator is used to help in the classification process.

- 50 -

Formally, it is stated that this parsing process P takes as input a query Q which consists of a set of

words w. A series of functions f is applied over combinations of w in Q to produce a set S of tuples

t, of which each t consists of exactly three values t1, t2 and t3 – two objects, and an operator. This

is shown in (1).

1 2 3

() and

, (, ,)

P f w Q S

S t S t t t t

=   →

=   =
 (1)

Codification: Each object and each operator are codified with a shorthand notation. All literals

are then replaced with a single non-unique shorthand placeholder regardless of data type.

Formally, it is stated (2) that for all object members t (t1, t2) of set S, each t1, t2 is replaced with a

codification of t1, t2, designated c(t1) or c(t2) (t3 is left intact):

1 2 1 2 2 3 3, , 1 (), (),S t t S t c t t c t t t=   = = = (2)

Classification: Each object is classified as either a selection, a member, a predicate or an

intersection. Each of these terms are used in their relational or set-theoretic sense; a selection is 𝛔

of values over a relation R; a member is an element x that belongs to a set A such that x ∈ A; a

predicate is a condition placed on a selection or more formally, the expression that is φ in the

selection 𝛔 of values over a relation R subject to the propositional expression φ; and an

intersection is a natural join ⋈, theta join θ, semi-join ⋉ and ⋊, left-outer and right-outer join ⟕

and ⟖ (but not the anti-join ▷ due to the lack of a direct short analogue in SQL). The output is

a temporary set that is used in the matrixification step. This set, designated K (3), consists of a

distinct list of objects o and a classification c arranged as a tuple, such that:

1

where c C ('selection','membership', 'predication','intersection')

{(,)...(,)} o SnK o c o c



=  
 (3)

Matrixification: The matrixification function f operates on set K and arranges each object on

virtual X, Y and Z axes with every object appearing on both X and Y axes in every Z slice. The Z

axis has a cardinality |Z| of 4, consisting of a slice for each classification; selection, membership,

predication and intersection. For every operator-object relationship on axes X and Y, the value

at the intersections of the object and operator is marked with the value 1 only on the Z axis that

corresponds to the classification of the operator on the objects within the relationship. All other

intersections are marked with the value 0. The input is the codified set of tuples K that originate

- 51 -

from (3) above. The output is a three-dimensional matrix M which is represented as two matrices,

showing axes XY and YZ (4):

[0 1] [0 1] [0 1] [0 1]

[0 1] [0 1] [0 1] [0 1]

(), such that:

() ordered set of and

() () and

| ()| | | | ()| | | and

| ()| 4

such that the values in M consist of (XY, YZ):

M f K

M x o K

M y M x

M x K M y K

M z

M

   

   

=

=  

=

=  =

=

=

 
 
 
 
 

(XY) (YZ)


 
 
 
 

 (4)

Compression: The ordered matrix of objects is combined (in shorthand notation) in a string format

and the resulting binary expression, read left-to-right (X), top-to-bottom (Y), front-to-back (Z) as a

hexadecimal value, with Z-axis categories coded as S, M, P or I respectively. This yields a

relatively short string that designated S’ (5) representing the structure of the query encapsulated in

M.

' m , (())S M hex concat m=   (5)

Comparison: When query comparison is required between two queries compressed in this form, the

compressed strings are used, and the Hamming distance is calculated [19] between each co-ordinate,

summing these to yield a whole positive integer. Then, by inverting the resulting sum over the

total population of co-ordinates, this is normalised to produce a measure of similarity in range 0-1,

where 0 is completely dissimilar and 1 is identical:

In the following sections, the key components of the process are examined.

- 52 -

5.5 Queries as Graphs – the Query Parser and Similarity Scorer

5.5.1 Description

SQL is the de-facto language used for communicating with relational databases and is based on the

well-established principles of set theory [3, 20, 21]. SQL commands SELECT and JOIN map to the

relational algebra constructs. Based on these building blocks, many set-theoretic expressions can be

represented as SQL queries and vice-versa. This principle underpins the matrix parser. The purpose

of the matrix parser is to represent the SQL query Q as an object on which mathematical

operations can be applied; given that each SQL query is essentially a narrative construction obeying

syntactic rules that is later reduced to an internal representation by the query optimiser [22], some

method is required to represent the query in a formal, empirically-comparable format. Text-based

comparison methods do not provide sufficient support for query comparison since the key element

in optimising a query is the query structure, rather than syntactic elements. Queries which are

logically identical may have syntactic variations such as whitespace, alias differences and so on

which introduce false negatives.

The query optimiser overcomes this issue by reducing a query to a parse tree [23, 24] – an internal

representation of the operations and objects within a query. In PETAS, a different method is

chosen for several reasons.

The first reason is that PETAS is concerned with the structure of queries rather than the binding

of objects. By regarding structure over content, computationally efficient similarity comparisons

can be achieved using matrix arithmetic, without the need to iterate over the process of building

and comparing trees. The cost-based optimiser is adept at handling ordinary queries unaffected by

the anti-patterns manifest in ORM solutions. However, using constructs like multi-layer nesting of

queries (instead of JOINs) and fetching many columns increases the complexity of the query for the

CBO as discovered in the literature review.

In the PETAS approach, the complexity of the query is less relevant – the cardinality of the

matrices is bounded by the number of objects in the query, not solely the arrangement of these

objects, which includes the relationship type. The CBO works on a query-by-query basis – if a

query is not found in the cache, the query is recompiled with the attendant delay in the

parse/compile/optimise process. This process becomes inefficient if numerous similar ORM-

generated queries are received, so that a large majority can require compilation. PETAS looks at

the query structure, notes that the query Q is (structurally) like some previous queries (Q1 … Qk)

and infers the best schema to use without consideration of the literals in the query. Although the

remapped query Q’ is still passed to the optimiser, it is executing against a better-fitting schema

and, where appropriate, Q’ can be fitted to a previous execution plan, shortening the compilation

- 53 -

time and potentially undoing the anti-pattern caused by the ORM. Thus, PETAS does not seek to

replace the CBO, but to conjoin the query with the best possible schema in preparation for the

normal optimisation and execution process.

For these reasons, it is proposed to use an alternative method of relational query representation,

based on a) identifying the relationships between elements in the query and b) describing the type

of relationship, the whole to form a directed graph.

In such a representation, each object in the query (column name, or table or view name) becomes a

node in the graph, and the relationship type between nodes is categorised as either:

• M embership (column name is a member of a table)

• Intersection (a relationship between two tables, typically an inner or outer JOIN)

• Predication (a condition, by way of an operator such as =, < or >, is placed on the

relationship)

• Projection (the node is a subset of another node).

Although this is similar to a parse tree (an acyclic graph), it is constructed from the objects and

the type of relationship they have with each other, rather than the relational operators alone, and

has a completely different abstract (and internal) representation. It is also not required, unlike

with a parse tree, that any binding takes place.

This directed graph can be represented in terms of the adjacency of the nodes, in a construct called

an adjacency matrix, in accordance with general information theory [25, 26, 27]. More particularly

it can be represented as a 3-dimensional binary adjacency matrix (termed an adjacency 'cube'),

which represents the structure of the query in a 3-dimensional binary medium. Three-

dimensionality is required for accuracy since it is desirable to capture the type of relationship

between two objects and not simply the fact that a relationship exists. This increase in accuracy

increases the utility of the similarity score and is explained further through the given examples.

The i and j axes are comprised of an ordered node list, and the k axis is a type representation. NCx

is assigned to mean the node cardinality, or number of nodes, of any given cube Cx. Thus, any

intersection of the three axis indicates a relationship exists and contains the value 1, and all other

intersections contain 0. The result of this process is a tuple comprising of two 3-dimensional

adjacency cubes, which can be represented in memory as a multidimensional array.

- 54 -

5.5.2 Example

Consider Fig. 5.4. This SQL query fetches a sum of sale amounts grouped by sale date and the

name of the point-of-sale terminal operator. This might be a common query in a retail

environment. The base tables can be modelled as an entity-relationship diagram (the logical stage

of database design) using 'crow's-foot' notation in the UML style; excluding columns that are not

selected for the sake of simplicity.

Fig. 5.4: Example SQL query with ERD diagram

Initially the same path is followed to parse this query ready for execution as existing

implementations - tokenisation. Fig. 5.5 shows a list of the individual query elements from the

query in Fig. 4. For this test case, a simple approach is tried; once tokenised, each token is listed

along an x-axis and a y-axis, forming a square. Where one element corresponds to any other

element in the SQL syntax, the value 1 is inserted at the intersection of these elements. By

'corresponds', this means 'has a relationship with'. So, for example, each column listed in the

SELECT operator is linked to SELECT by virtue of being 'called' by the SELECT clause and will

be marked with 1; else, marked with 0. Where there is a nested relationship i.e.

SUM(SLI.ItemAmount), the nested element will only be connected to its immediate siblings on the

same hierarchical level if there are any direct actions on one from the other; and to its parent, but

not to its grandparent. So, SLI.ItemAmount has a relationship with SUM but not to SELECT.

- 55 -

It is not important at this stage that every nuance of the query is captured; rather, that the general

'shape' of the query can be represented in some form that is suitable for computational comparison.

This is a fair approach when considering that it is not possible to traverse from a bind tree to the

original query in the current approach either; query translation from parsing to execution is

currently a one-way operation, both in theory and in practice.

Fig. 5.5: Distinct query component list as key-value pairs

This linkage operation results in a 2-dimensional matrix with N^2 elements in a square (where N is

the number of elements in the query). This is illustrated in Fig. 5.6(a). This is indistinguishable

from an adjacency matrix in graph theory; an adjacency matrix lists all vertices in a graph on the

x- and y- axes and indicates, through a bit field (0 or 1), whether there exists an edge between the

two vertices. Thus, as an adjacency matrix has been able to be constructed, so too can a graph be

constructed from the adjacency matrix which represents the query. This is illustrated in Fig. 5.6(b)

for the test query. Given that the computational potential of the new model is under test, this

visual graph representation only amounts to an interesting aside, but it does demonstrate how the

process can neatly map from a semantic query to a mathematical, computationally-friendly

construct in just a few algorithmic steps.

- 56 -

Figs. 5.6(a) and 5.6(b): Adjacency matrix and directed graph for the test query

Some clarification is due on mapping the query to the adjacency matrix. All relationships between

elements are assumed to be undirected. Relationships exist between a column and the owning

table. Relationships are pairwise, and no relationship between the main verbs (SELECT, FROM,

GROUP BY) is specified using this model. Elements are associated with themselves by the

property of membership (each element of a set is a member of a set containing a single element -

itself, in accordance with the Zermelo-Fraenkel axiom schema of separation or e.g. by self-JOIN

operations.

Fig. 5.7 shows a high-level diagram of the tokenisation algorithm.

- 57 -

Fig. 5.7: Query tokenisation flowchart

5.5.3 Refining the algorithm

This method as described has some significant drawbacks. First, the number of vertices N of the

resulting adjacency matrix will correspond to the number of tokens in the query, and so the

cardinality (total number of matrix members) will always be the square of the number of vertices

(N^2) and so the number of values to manage in the adjacency matrix will rise exponentially to the

number of members. This is scalable for short or simple queries but this exponential increase in

complexity may lead to the algorithm either breaking down as the loop-based nature of the

tokenisation and relationship-inference components of the algorithm and introducing an

unacceptable query parsing performance overhead during execution, in proportion to the size of the

query in hand.

Next, the method of non-discrimination of the tokenisation phase leads to all tokens (elements of

the query) being treated equally. This means there is no discrimination in the type of query

element; tokenisation occurs and loss of detail on whether an element is an actor (e.g. a keyword

- 58 -

like SELECT) or an object being acted upon (e.g. a column/attribute). Considering that the object

goal is to be able to represent the query as a 'shape', represented by a graph, for the express

purpose of being able to compare some query 'shape' to some other query 'shapes' to determine a)

the likelihood or feasibility of execution plan re-use and b) for the benefit of decision-making when

selecting a schema, then the ability to differentiate between at least actors and objects would re-

introduce a major degree of detail lost during the initial attempt at query modelling.

Finally, the practice of non-discrimination between token types means that the corresponding loss

of detail necessitates the provision of an accompanying legend or map, mapping each token to its

columnar position or label. In the relational model, such maps are known as attribute headings and

carry domain information. Not to do this would introduce a higher probability that two queries are

compared and incorrectly categorised as similar, despite the token mappings being very different.

Conversely, minor differences between two otherwise-similar queries such as the rearrangement of a

JOIN or the use of a CTE (common-table expression) instead of a subquery, may lead to the

incorrect categorisation of two queries as being largely dissimilar despite their structural similarity.

These flaws can be addressed by introducing a third dimension to the adjacency matrix. At

present, the mechanism is to determine whether two tokens have a relationship – the type of

relationship is not being determined. If relationship type was being mapped along a third

dimension (z-axis) the adjacency matrix is transformed into an adjacency cube. But how to

distinguish type? In the two-dimensional model, a relationship is specified as a 'has-a' or 'is-a' or 'a

dependency exists upon' - the three terms amounting to the same definition, that is a binary choice

between whether a relationship exists between two elements. In the three-dimensional model, the

type of relationship is also under consideration.

To determine the allowable domain of types, the SQL syntax and some of the underlying relational

theory can provide a solution. Consider that the solution now differentiates between the thing

being acted upon (the object) and the thing doing the acting (the actor), then an intuitive

modelling method might be to list all the objects on the x- and y- axes, and classify the actors into

a range of types along the z-axis. What relational operations are available to help provide some

taxonomy for classification? The relational algebra provides several clues. Projection, which maps

broadly to the SQL equivalent of SELECT (it is not the same as relational selection); union;

intersection (which maps to several types of JOIN, both relationally and in SQL); rename, which

can be actualised in SQL using aliasing; filtering (in SQL, rendered as JOIN clause predicates and

WHERE clauses and relationally, a selection); amongst others. Interestingly, there is no specific

relational form for aggregation, but this facility exists in SQL. Aggregation can be rendered in the

relational algebra, albeit awkwardly.

Given the basic relational operators, these can be roughly classified into five distinct

categorisations. Note that this still does not render a complete representation of the query in an

- 59 -

adjacency cube format; the loss, notably, includes relationships between elements and groups of

elements; and the particulars of primitive operators; but the ability is gained to capture additional

information about the query through the use of the z-axis. Consequently, the four chosen

categories are projection, intersection, membership and predication which together cover a large

proportion of the legal operations in relational algebra and SQL syntax. Each category occupies a

row on the Z-axis. These terms are defined below.

Projection is the relational-algebraic term for the exposure of some relation R (or relational

operation) on one or more other relations, limiting the attributes exposed to some subset of R such

that the attribute values are limited. Thus, any element can be identified that is SELECTed

within the SQL query FROM some R being projected, and at the intersection between the attribute

on the x- and y- axes in the adjacency cube and the projection layer of the z-axis, the value 1 may

be inserted. An intersection of R.a1 and a1 on the projection layer of the z-axis (z = 0) indicates

R.a1 is projected (SELECTed) from R and so there is no need to include the actors on the x- or y-

axes. This has the benefit of reducing the number of components on the x- and y-axes and

improving scalability of the model.

Intersection is next defined as the case where R is intersected with some S (both R and S being

relations/relational variables); such that the intersection (term not used solely in the strict

relational sense) causes some form of a SQL JOIN. This JOIN will either have an additive,

subtractive or null effect on the attributes being returned (and on the range of data returned),

depending on what attributes are projected. So, for example, the relational semijoin [left-bowtie] or

[right-bowtie] corresponds somewhat, but not entirely to, the INNER JOIN with predicates in SQL.

Therefore, in the adjacency cube any intersection of an element where there exists a JOIN directly

upon another element is marked with 1. As JOINs in SQL are actioned between tables

(relations/relational variables) and not columns (attributes), this, by definition, means intersections

in the adjacency cube may only exist between relations and not attributes. Note that the JOIN

predicates are not lost but are captured in the predication layer and not the intersection layer.

Also note that should a true relational intersection occur - (a natural JOIN, and represented in

SQL by the INTERSECT keyword) then this can also be represented in this layer.

M embership is defined as an attribute such that an attribute a is a member of a relation R if the

attribute is present as an instance of a domain in all the tuples in R. In SQL parlance, it is enough

to say a column is present in some table (or some expression of a relation such as the join of two

tables). This layer differs from the projection layer as all columns in the query, regardless of

whether they are SELECTed, are mapped to their relation in this layer. This is particularly

important in WHERE clauses and JOIN predicates, for example, which may impose restrictions on

the data being returned without necessarily returning that data in the result set. Membership is

established between an attribute and a relation (but R is always a member of R, if R = R), and

- 60 -

attributes are members of themselves (an is a member of an if an = an) - more formally, relations

are improper subsets of themselves, as are relations, in the adjacency cube.

Finally, predication is the layer that deals with the SQL clauses which compare one element to

another. Predicates are found in the WHERE clause, in JOIN predicates and in more complex

constructs such as LIKE, IN and CASE statements. In their basic form these are two elements

separated by a primitive operator (such as =, >, <). Relationally, these are filters and projections

that are limited by filters are selections.

In the adjacency cube, all predicates are taken as pairs of values under comparison and the

intermediate operators are discarded. If any constants are involved, these are mapped to

placeholder values and included in the dimensions of the cube. Each placeholder value is notated

as p1 .. pn. For the example '...WHERE R.a1 = 7 AND R.a2 < 5', (R.a1 = 7) becomes p1 and

(R.a2 < 5) becomes p2. Then any relationship between the predication and another element is

expressed using a 1 at the intersection in the normal manner.

In Chapter 6, this query representation idea is further described through example. Chapter 6 also

presents algorithms for implementation, describes the implementation with code examples, describes

the testing process and presents the results, implemented in the RDBMS PostgreSQL.

5.5.3 Calculating the similarity between three-dimensional adjacency cubes

Given an adjacency cube as an output from the query parser process, the cube is compared to

previous adjacency cubes stored in order to establish, from the performance history, the best

schema allocation for the cube based on the allocations of similar cubes. Given cube C1 , a second

cube C2 is fetched (being a cube from memory, or a cache) for comparison. This comparison may

be repeated many times.

The similarity scoring process takes two cubes as inputs and constructs a third cube C3 based on

the respective Hamming distances [19] (defined as the number of transitions required to get from

state A to state B in a number system, in this case base 2 integers) between each corresponding

intersection - that is, each intersection of nodes and type. Each corresponding intersection ([i, j, k])

is compared between cubes, the Hamming distance forming the third cube. When NC1 ≠ NC2, the

cube with the lowest cardinality, min(NC1, NC2) is aligned to any corner of the larger cube then

padded with 0s. The reason for the padding is to ensure the cubes are of the same size; formally, to

ensure NC1 = NC2 = NC3. This is important since otherwise an error is introduced to the outcome

of the Hamming distance, directly proportionate to the disparity in cube size. Any member of the

population of C3 can then be calculated using (6):

- 61 -

 , (6)

where integers i and j, representing the nodes, are bounded by the conditions i = j, j > 0, j ≤ NC1,

and j ≤ NC2. Integer k, representing relationship type, is bounded by 0 < k ≤ 4. Using (1) for all

distinct ([i, j, k]) co-ordinate triples in C1 (overlaid on C2), one may then calculate the similarity

score by summing the Hamming distances at each resulting ([C3i, j, k]) intersection in the third

cube to calculate an integer S, defined as (7):

3 (, ,)

3

() / 2
1

| |

i j kC
S

C

 
= −  

 


 , (7)

which normalises S so that S is bounded by 0 ≤ S ≤ 1.

This process is illustrated with the following example. Consider Fig. 5.8, which describes query Q,

another query M, and how the structure of these queries can be represented using directed graphs:

Fig. 5.8: Directed graph representations of SQL queries

- 62 -

These graphs look similar but are not identical. Q has an extra projection (in the SELECT, A.x)

and an extra predicate (in the WHERE, A.y > 1). The conclusion from the examination of both

queries, subjectively, is that the queries are 80% similar, therefore assign S = 0.8.

This can then be checked by calculation using the matrix parsing method. Let the directed graphs

first be represented using 2-dimensional adjacency matrices. The application of (6) to the

adjacency matrices for Q and M obtains the matrix of the Hamming distances, C3 as shown in Fig.

5.9:

Fig. 5.9: Calculating Hamming distances from adjacency matrices

It is noted that H = 1 (there is only 1 non-zero value in the resulting C3 matrix) and NC3 = 5.

Equation (7) is used to normalise this, and the result is S = 0.96. This is a significant deviation

from the initial subjective estimate of 0.8 and implies there is only a 4% difference between the

queries. This is counter-intuitive since there are 2 significant differences in the query structure from

a total of just 5 objects. Note that A.y features as the object of both differences, but C3 shows only

one deviation. The information about the second deviation is lost when using 2D representation,

since the information about the type of difference is not taken into consideration.

The matrices are now recalculated, but in three dimensions – that is to say, to recalculate the

adjacency cubes, to preserve this type information on the Z axis. Fig. 5.10 illustrates the exploded

cubes and the subsequent cube C3 that results from the application of (6):

- 63 -

Fig. 5.10: Calculating the adjacency cubes and Hamming distances for Q, M

Recalculating (7) on C3, NC3 remains at 5, but H is now the sum of non-zeros in C3, so H = 2.

This yields S = 0.84. The type information has not been lost, and the similarity score calculated is

now much closer to the original subjective estimate of 0.8.

It is acknowledged that, using this method, the node identifiers are discarded, and that such

similarity comparisons may therefore detract from accuracy due to factors like table population

(cardinality). However, this reflects the approach used in execution plans, which are constructed

indirectly from the parse tree structure of the query [22, 28] therefore, structure has been shown to

be significant in query tuning and considerations like database statistics are regarded as secondary

in this context. It is also acknowledged that, as described, the process will not support certain set

operations such as UNION; the example presented here represents the initial implement of PETAS

and future versions will deal with constructs such as aggregates. There is also the scope to use a

4th, 5th or nth dimension to further describe the query, however this will come at the cost of

exponential computational effort since the number of calculations scale exponentially.

- 64 -

5.5.2 KNN selection – query ranking using K-nearest-neighbour

K-nearest neighbour (KNN) is a machine learning classification method that can classify a point P

in relation to entities (Ei ... En) in a domain D of multi-dimensional Hilbert space H (a plane

occupying N dimensions) based upon the proximity of P to a set of K entities (Ei ... En) as modified

by a weight W assigned to each (Ei ... En) (modification can be additive or multiplicative). The

boundary, K, can be defined in two ways – either whether K enables a binary classification

according to if any given Ei is a neighbour of P with the outcome 0 or 1 depending on whether Ei

falls within the boundary K, or by simply including the nearest neighbours of P by some distance

measure (Euclidean, Manhattan etc).

The concept of using a boundary function for K is illustrated in the figures below for N = 1, N = 2

and N = 3. It is notable that K need not be linear or a constant, but is bounded only by the

inclusion of P and some upper limit – Fig. 5.11(a) shows K as a circle on the number line with

radius k; Fig. 5.11(b) shows K as an ovoid with height 1.8y and width x (foci at [0.27y, 0.5x] and

[1.73y, 0.5x]); Fig. 5.11(c) shows K as a cuboid occupying space x, 1.5y and 2z. All Wx are additive

in these examples. K can be arbitrary and variable.

Fig. 5.11(a) shows how entities E1 and E2 fall within K, but E3 does not. Regardless of

dimensionality, each Ex is affected by some weight Wx. Adjustment of each Wx can therefore affect

the position of Ex and membership of K. Thus, the population of Ex points inside K varies over

successive feedback cycles through the ‘movement’ of (E1 … Ex) within D. This trait can be used

to affect the outcome of classifications and subsequent schema assignations.

- 65 -

Figs. 5.11(a), 5.11(b) and 5.11(c): K in one, two and three dimensions

- 66 -

For PETAS, an alternative approach is used, nearest-K number of Ex rather than all Ex within a K

boundary. In PETAS, this is a one-dimensional KNN representation. However, instead of a

boundary condition defining K, the K-nearest to point P is selected. For example, K = 3 means to

include the 3 nearest neighbours to point P. This still enables the movement of each Ex within the

domain but provides the advantage of being able to sort all Ex in an ordered list and simply select

the top K from the list. It also avoids having to set a fixed boundary condition for K which may

be suboptimal. Note that the term P is replaced with Q, since Q is the point of origin for the KNN

with a value of 1, and Ex is replaced with Qx, since the entities in the generalisation are queries in

PETAS.

To proceed, some query Q is taken and the adjacency cube is calculated. Then, for some

predefined number of queries (Q1 … Qx) together with their weights (W1 … Wx) drawn from a

‘metadata cache’ of training data, Equation (1) is used to produce C3 for each (Q, Qx), and

Equation (2) is used to produce S’x, the similarity score, from C3. The term S’x is multiplied by the

weight Wx resulting in Sx and this value is stored as an addition to the tuple (Q, Qx, Cx, Wx). By

this repetition over x members of the metadata cache, x tuples of (Q, Qx, Cx, Wx, Sx) are obtained.

The Sx values are plotted along the number line and so the outcome is a list of x values of Sx, each

Sx associated with an Qx, and falling in the domain 0 <= D <= 1. Weights are updated after the

schema selection process.

The output of this process is the top K queries and their associated schema assignations on this

number line closest to Q, which are used when moving on to the schema classifier.

5.6 The Schema Classifier and Query M apper

5.6.1 Description

The outcome of the KNN process leads to the identification of K tuples from the training data in

the metadata cache. Each tuple consists of the unique identifier of the query in hand, Q and the

unique identifier of the identified neighbouring query, Qx identified by the KNN selector. Each

tuple also has as a prior schema classification Cx associated with it - this is the identifier of the

schema on which the Qx query last ran, and a weight Wx. Thus, each tuple has the construction

(Q, Qx, Cx, Wx). From these identifiers, a majority verdict for schema choice can be attained by

examining all the Cx values associated with the Qx values in the tuples and applied to the query Q

in hand. In this way, Q is assigned the most ‘popular’ schema choice of all its nearest-neighbouring

queries (queries with greatest structural similarity). Note that the conditions (k mod 2 ≠ 0) and (k

> 1) should be true to ensure a majority. Next, Q is mapped syntactically from the base schema

- 67 -

for which it is written to the majority verdict schema and passed to the RDBMS query processor to

execute and return the result set. In the proof-of-concept implementation, a stored procedure was

written to execute this but in a full implementation, a lower-level structure for re-mapping, such as

the parse tree, would be used.

After execution, the execution duration for the query Q, termed d, is returned; this information is

used to compare against the previously-recorded d of each of the neighbouring queries (Q1 … Qk),

designated Qxd. For each Qx, if Qxd > d then the schema choice Cx for the query Qx was deemed

‘useful’ – this means query Q executed quicker than Qx, and the corresponding weight Wx is

increased (one could equally measure CPU cost, or I/O consumption instead of query execution

time). Conversely, if Qxd < d then Cx for the query was not useful – this means query Q executed

slower than Qx, and the weight Wx is decreased. If Qxd = d then Wx is unchanged. In this way,

the process rewards each Qx query in the metadata cache with an increased weight Wx according to

whether the schema choice of the query was a good choice, in the sense that Q executed faster than

Qx, for the query Q. Successive iterations mean that the Qx queries whose schema choices are most

applicable to the recent inbound flow of Q queries are probabilistically more likely to be selected

than those Qx queries which have schema choices leading to slower executions of Q than Qx. By

‘probabilistically more likely’, it is meant that due to the application of higher weights Wx to the

most-used queries in the metadata cache, these increased weights for each (Q1 … Qk) in the KNN

calculation make these queries more likely to be selected as neighbours to Q than any other query

in the cache. With many iterations (hundreds, thousands or tens of thousands) the queries in the

cache that are most useful gain the largest weights, and the least useful are rarely if ever selected –

these are pruned periodically by the asynchronous cache management process. Thus, the metadata

cache of previously-run queries continually adjusts itself to the inbound flow of queries Q, and any

change in the general structure of the query flow is soon reflected in the classifier.

5.6.2 Feedback mechanisms

Database queries are highly variable. This variability can range from intra-query, where one query

is unlike the next, to variation caused by different query patterns being generated by different

applications (e.g., ORM vs. stored procedure calls), to long-term query pattern changes over time

as ORM solutions are upgraded. Creating a classifier based on some N number of different query

types is undesirable in these circumstances, firstly because creating such a system is resource-

intensive and must act as a catch-all for unknown query flow. These limitations are experienced in

expert systems which are more rigid than systems that can respond to external stimuli.

Consequently, PETAS uses a machine-learning approach, classifying queries but having in place

- 68 -

processes for improving the accuracy of the classifier based upon the success of its own previous

classifications. These are feedback mechanisms.

Three feedback mechanisms are proposed in PETAS. The first, previously described, updates the

weights in the metadata cache as queries are executed. The second is the feedback mechanism for

the KNN process. This is run asynchronously, i.e., not within the execution timeframe of the

query, and is responsible for a) inserting the most recently run query Q into the metadata cache

(with a weight = 1) and b) pruning the metadata cache of entries based on the lowest weights and

the most aged entries. In this way, the metadata cache population is managed. It is proposed

that a future iteration of PETAS will include a third feedback mechanism to reduce the need for

multiple instances of schemas. In the current proof-of-concept implementation, there is a

requirement to maintain multiple instantiations of schemas to enable schema choices.

This has the effect that data is duplicated and requires, at minimum, a doubling of storage space

for two schemas. This is currently necessary since existing RDBMS platforms do not support the

creation of logical-only schemas at the whole-database level. It is envisioned that PETAS could be

used in a multi-schema environment, where there exists a ‘base’ schema of the physical data and

multiple alternative schemas which contain arrays of logical pointers to the data in the base

schema. These pointers will also consume space but could be designed in such a way as to occupy

less space than the physical data. These alternative schemas can then be created and destroyed by

an asynchronous process which is responsible for a) designing and implementing schemas based on

the flow of inbound queries, b) assessing existing schemas against how often they are executed

against and c) destroying under-utilised schemas.

The similarity scoring mechanism, including details of the KNN mapping process and the

identification of a suitable schema derivation for use by a given query, is described more fully in

Chapter 7, which also provides algorithmic implementations; code details from the practical

implementations using Python and PostgreSQL; the experimental design and results from testing,

before discussing benefits, drawbacks and overall success of this approach in a life-like environment.

- 69 -

5.7 Dynamic Schema Redefinition

5.7.1 A new definition of query efficiency

Query performance can be measured in many ways, often dependent upon the platforms

themselves. For example, cloud platforms such as Microsoft Azure use Database Transaction Units

(DTUs), a blended measure of CPU and I/O use, to measure query throughput [29]; natively, cost

can be measured per-query as a ‘query cost’, a purely relative measure that has roots in CPU use

and I/O load [30]; others may prefer to define query performance, and therefore RDBMS efficiency,

as a combination of more traditional system administrative measures such as disk reads, disk faults,

CPU use and memory used.

However, there is no ubiquitous definition of query efficiency, and so it is necessary to invent one

for the purposes of comparative analysis before proceeding. In this section, a new definition is

proposed, and it is shown through example how the reduction of the number of rows of data that

the query execution engine must traverse for a given query is correlated to the cardinality (number

of rows) of the data set in question, thus demonstrating how query efficiency can be defined as a

ratio of rows required by the query versus row cardinality of the relation being queried. The

relational algebra is used. This efficiency metric is not central to the novel contribution to

knowledge, being a simple definition of a measure to enable further testing on dynamic schema

definition, and so is not discussed elsewhere.

When defining the efficiency E of a query Q, it is first stipulated that this query must be a

selection, since the efficiency relates to the rows selected versus the rows available (8). The term E

is then defined as the ratio of data values returned from the relation R by the selection 𝛔, as

modified by some predicate φ, divided by the number of data values read by the query (using the

cardinality notation | |) to return the query result (9):

Q = 𝛔φ(R) (8)

E(Q) = |Q| / |𝛔φ(R)| (9)

The number of data values read is chosen as a measure since the purpose of this approach is to

limit the number of data accesses required to service a query towards an efficiency ratio of 1; to

this end, this measure is not concerned with CPU thread efficiency, memory use, network use or

other measures individually. For simplicity, a read is defined as a collection from storage of a

- 70 -

single row/column intersection value by the RDBMS rather than as an operation to collect a

specific number of bytes, since the number of bytes returned by a read can be variable, but if this

figure is known, then the subsequent calculation is straightforward.

The number of reads required to service a query are determined by several factors; the type of

components in the query execution plan, the cardinality of the tables (relations) involved as query

sources, and the availability of suitable views and indexes on the base schemas. In other words, the

efficiency is hereby defined by the amount of necessary data reads required to return the result

versus the amount of unnecessary data reads that took, or would take, place. The definition of

efficiency measure E can therefore be precisely defined, differentiated by the four common types of

query plan component that read data [31, 32, 33, 34], as follows. As in (8) and (9), cardinality

(number of rows) of a relation is notated using the standard notation |R| and the notation

described in Codd’s relational algebra [20] is employed.

For table/index scans, which involve reading the whole base relation or clustered index R and

extracting results based on predicate φ, it is assumed that the yield of the query can be retrieved

entirely from the scan; else, the efficiency E must be distributed according to the cost of the

individual components in the query plan as appropriate. The attributes of a relation are denoted as

R(a1…an).

The efficiency of a table or index scan against R can therefore be defined as shown in (10):

E(𝛔φ(R)) = (|(𝛔φ(R)| ⋅ |𝛔φ(R(a1 … an))|) / (|R| ⋅ |R(a1 … an)|) (10)

Equation (10) can be illustrated with a worked example.

If query Q yields 50 rows of 9 columns from the RDBMS, then:

 |(𝛔φ(R)| = 50 and | |𝛔φ(R(a1 … an))| = 9.

If |R| could yield 10,000 possible rows of data, with |R(a1 … an)| = 11 possible columns, then these

values are substituted as:

(50 ⋅ 9) / (10000 ⋅ 11) = 450 / 110000 = 0.004.

This means that, implemented using a single table scan, the efficiency E(𝛔φ(R)) of query Q has an

efficiency ratio of 9/2200, or 0.4%; the scan operation read and discarded 99.6% of all data in R to

- 71 -

service the query Q = 𝛔φ(R), assuming that a read is defined as an I/O operation on a single

row/column intersection. This idea scales linearly to the definition of a read as a row read, since

each value in a row of data would need to be read to include or exclude it from the query result,

given no key is used in table or index scans.

Comparing this against B+-tree index seeks, which involve reading a defined ordering of the base

relation R structured as a B+- tree and extracting results based on some desired predicate key K,

the efficiency correlation is calculated based on the number of tree traversal operations required

and the reads required to find the appropriate data in the leaf level of the tree. As with the table

scan, it is assumed that the yield of the whole query 𝛔K(R) can be retrieved from using the

predicate key and from within the index; where this is not the case, the efficiencies will need to be

distributed across the relative components in the query execution plan according to component

cost. The number of traversal operations (T) depends on several factors: the average row length

(L), the number of rows per leaf page (RP), the standard page size (S) in the RDBMS, the number

of rows in the relation R (denoted |R|) and consequently the number of leaf-level pages required

(|P0|) in the index.

Using the methodology for calculating read operations on a B+-tree described by Delaney [8], the

average rows per page and the number of leaf pages in a B+- tree can be derived using the

following equations, expressed as (11) and (12):

Average Rows per Page (RP) =

Standard Page Size (S)/Average Row Length (L) (11)

Number of leaf pages (|P0|) =

Number of Available Rows (|R|)/Average Rows per Page (RP) (12)

By calculating |P0|, it is now known how many leaf pages are required, and consequently the

number of intermediate level pages required from |P0| can be inferred by looking at the bytes

required (B) by the datatype of the key for a single value; for a single, non-composite integer

column this is normally 4 bytes, for example. The structure of these pages varies between RDBMS

implementations, but in Microsoft SQL Server, to illustrate, the page pointer length (PP) is 6 bytes

and row overhead (RO) is 1 byte, yielding 11 bytes for a single intermediate-level row in the B+-

tree ([8], pp. 322) with a single integer key, although this may vary between RDBMSs and software

versions. The number of intermediate-level pages (|P1|) required can be calculated as per (13):

|P1| = (|R| ⋅ (B + PP + RO)) / S (13)

- 72 -

The calculation now progresses to the next level of the index (which can be either another

intermediate level or the root level). This level contains page(s) with pointers to the previous

intermediate level of pages. Therefore, only enough pages in this level are needed to contain the

pointers to all pages in the previous level, as illustrated in (14):

 |P2| = (|P1| ⋅ (B + PP + RO)) / S (14)

This calculation holds true for all intermediate and root levels, so the total number of pages

required can be calculated as the sum of all pages across all levels, and consequently the total

storage required (TS) in bytes for the index as this figure multiplied by the standard page size for

the RDBMS, as per (15):

TS = S ⋅ Σ(|P0|, |P1| … |Px|) (15)

Having calculated the various values of Pn, the next calculation is the average number of traversal

operations T as shown, starting from the root level (denoted Px) through to the leaf level (denoted

P0), subtracting iteratively from x until 0 is reached, culminating in (16):

T = { ∀x > 0, ⌈ (|Px-1| / 2) ⌉ + ⌈ (|Px-2| / 2) ⌉ + …

⌈ (|Px-n| / 2) ⌉ } + … ⌈ (|R| / |P0| / 2) ⌉ (16)

Table 5.12 illustrates an example using these formulae, which shows 28 reads are required against a

B+-tree index containing 10,000 rows (|R|) where each row is on average 200 bytes (L), given some

standard RDBMS parameters (S, B, PP and RO), deriving the remaining variables from these

parameters (RP, |P0|, |P1|, TS and finally T):

- 73 -

Table 5.12: Worked example for calculating traversal cost across a B+-tree index of 10,000 rows,

consisting of a 200-byte average length per row.

Description
Page size

(bytes)

Avg. row

length (bytes)

Avg. rows per

page

Num. of

rows in

relation R

Num. of leaf

pages in

index

Bytes

required per

index key

Notation S L RP |R| |P0| B

Value 8096 200 40.48 10000 248 4

Description
Page pointer

length (bytes)

Row

overhead

(bytes)

Num. of

pages in first

level

Num. of

pages in

root level

Storage

required

(bytes)

Traversal

cost (reads

required)

Notation PP RO |P1| |P2| TS T

Value 6 1 14 1 2,096,864 28

Finally, the efficiency E of searching any B+-tree index can be defined as the ratio of the number

of reads required across some index R to read one row of data.

𝛔K(R) can then be defined as the inverse of T for one row of data, as per (17):

E 𝛔K(R) =
 1

{∀x > 0}, ⌈ (|Px-1|/2) ⌉ + ⌈ (|Px-2|/2) ⌉ + … ⌈ (|Px-n|/2) ⌉} + … ⌈ (|R|/|P0|/ 2) ⌉

 (17)

The index in the worked example shows T = 28, so 28 row reads are required, on average, to find

one row identified with a key using the example variables (200 bytes/row, 10,000 rows).

Using this example,

E 𝛔K(R) = 1/28 = 0.036 = 3.6% efficiency (for this case).

This can be modified for multiple rows N by changing the numerator to N accordingly.

Compare this against the values for a simple table scan produced by (17), substituting MAX(an) =

3 as a reasonable assumption of column count for both the query and the available columns (any

integer substitution of MAX(an) will do, if 𝛔φ(R(a1 … an)) = |R(a1 … an)|, as they cancel), as

shown in (18):

- 74 -

E(𝛔φ(R)) = (|(𝛔φ(R)| ⋅ |𝛔φ(R(a1 … an))|) / (|R| ⋅ |R(a1 … an)|) =

E(𝛔φ(R)) = (1 ⋅ 3) / (10000 ⋅ 3), therefore

E(𝛔φ(R)) = 3/ 30000 = 1 / 10000 = 0.01% (18)

With a table scan producing an efficiency ratio of 1/10000 (0.01%) and a B+-tree index scan

producing an efficiency ratio of 1/28 (3.57%), it is clear that a) the index seek is more efficient for

this example and b) that both methods fall short of the goal of full query efficiency with a ratio of

1/1.

It is clear that indexes, although useful in reducing the search space, still require unnecessary

traversal through data unrelated to the query and as such, a smaller search space and consequently

better query efficiency would be beneficial in reducing the number of required reads regardless of

whether indexes are used. It is acknowledged that this example has been simplified to read key

values rather than whole rows, but the number of traversals remains the same in either case.

In Table 5.13, the importance of reducing |R| is illustrated by modelling the relative efficiencies

using this method for a range of queries using a single index seek, varying the average row length

RL at various intervals between 10 and 3,200 bytes and the number of rows in the relation |R|

between 100 and 1,000,000 at logarithmic intervals, using a 3-level index, calculating the efficiencies

using Equation (2):

Table 5.13: Relative index seek efficiency for varying conditions using a simple efficiency measure

It is evident from the data that although index seeks are efficient when |R| is relatively low and L

is relatively high, this efficiency quickly tends to LIM → 0 as the number of rows in the index

grows, and generally improves as a function of the number of bytes per row. This indicates that

the primary driver of efficiency, as defined, is the number of available rows in |R| and strengthens

- 75 -

the case for data structures which are tailored to the query, reducing |R|, in order to reduce the

amount of data required to be traversed to yield a query result, thereby maximising efficiency.

For bookmark/row lookups (against either indexes or heaps, given a page number and row offset),

this is defined as a single read of a row given the precise physical location is known and therefore,

under the simplified definition of a read, is 100% efficient.

The findings in this area strengthens the case for the reduction of row data for query traversal,

lending credence to the idea of subset schemas as alternative query sources.

This idea, forming the central paradigm in the proposed solution, is explored further in the next

section.

5.7.2 Dynamic schema redefinition process design

As a result of the work described in Section 3, the denominators in common across all types of read

operation are clearer. These are the total available values in R (|R|) that must be addressed to

produce the result set of 𝛔φ(R) or 𝛔K(R) (given there is no purpose in differentiating between

table/index scans and index seeks any longer, these terms will be used interchangeably) and therefore

that the overall aim of increasing query efficiency can be addressed by reducing this denominator to

the lowest possible value and maximising E(𝛔φ(R)) towards E(𝛔φ(R))→ LIM (1). This means

reducing the total available number of data values that must be read, by any technique, towards

|𝛔φ(R)|. To do this, it is proposed to derive and implement new schema definitions in real-time to

reach this goal, maximising the query efficiency.

To decide on the queries to analyse, the query cache can provide a short-term storage facility.

Across RDBMS systems, the query cache is a local repository (normally held in memory while the

RDBMS is active) of query statements, associated query execution plans and other metadata. The

purpose of the cache is to minimise the time taken to generate query execution plans by re-using

plans already generated [35]; this is appropriate for both exact query matches and queries which

can be parameterised, i.e. literal values substituted with placeholders, such as with prepared

queries. This cache can be repurposed; to analyse past query patterns and generate new

supplementary schemata with appropriate cached query mappings. The proposed technique for

doing this is presented in the next section.

There is precedence for mapping between sets and subsets within the relational model, defined in

axiomatic set theory, for which set notation is used. The Zermelo-Fraenkel (ZF) axiom schema of

separation [3] defines this, as shown in (19):

- 76 -

(∃B)(∀x)(x ∈ B iff. x ∈ A and φ(x)) (19)

In straightforward terms, this means given the existence of a set B, for all members x in B, x is a

member of B iff. x is a member of A and some predicate concerning x holds.

Translating this to the relational model it can be stated that given a subset schema B, for all rows

of attribute values in B, those rows exist in B if and only if there exists a superset schema A and

some predicate, or condition about those rows in B is true. Therefore, this is functionally

equivalent to deriving a result set based on some predicate from a wider base schema, or in even

simpler terms, equivalent to asserting that a query result is valid if it derives from a wider pool of

available data. This axiom can be used to build subset schemas by analysing queries from the

cache, deriving smaller subsets of attributes and predicates from those queries, and presenting these

as materialised views (MVs) against which future iterations of the cached queries can be executed.

In RDBMS systems, views are overlays of relational expressions upon base schemas – essentially,

query definitions which can be called using shorthand. An example follows - a view on table

CUSTOMERS returns a subset of all attribute values from the Customer table bounded by the

predicate ‘WHERE DateJoined > ’10 May 2019’ (20):

CREATE VIEW Customer AS

 SELECT * FROM Customer WHERE DateJoined > ’10 May 2019’; (20)

This query can also be defined using the relational algebra, as shown in (21):

 𝛔 (DateJoined > ’10 May 2019’)(Customer) (21)

Formally, this appears to be a simple implementation of the axiom schema of separation. However,

views are illusory in the sense that although they provide a convenient shorthand to the user or

calling application, when a query against a view is executed, the underlying definition of the view is

called rather than any pre-prepared set of results. In other words, views alone do not provide any

significant performance advantages over simply running the base queries; indeed, the sole

advantage is human readability. For performance advantages, materialised views (MVs) are used

for proof-of-concept implementation instead, which are persisted and the data within them stored

separately to the base tables. Translating this idea back to the axiom schema of separation, the

MV is set B, the base schema is set A and the predicates are the view definition.

The set of algorithms and the algorithmic implementation of this solution are presented in Chapter

8 and the accompanying Appendices.

- 77 -

5.8 Chapter Summary

This chapter introduced and described PETAS, a new multi-component system to

supplement and augment the relational database query optimiser process within RDBMS

engines.

Comprised of three key parts with various subcomponents, this chapter illustrated how the

query parser can read an inbound SQL query and transform it into a compressed

multidimensional matrix representation of itself, reflecting the key structures. It was

shown how such multidimensional ‘cubes’ can be compared and contrasted through

generating a third cube as a function of two cubes and using Hamming distances to

calculate a similarity score, and shown how k-nearest neighbour can be used to identify

previously-run queries similar to a query in hand, extracting the schema variant most

likely to service a query effectively based on previous performance data. Finally, the

dynamic schema redefinition process was discussed, a novel method of using the ZFC

axiomatic schema of separation to define and destroy new schema subsets in real-time,

implementable using techniques such as materialised views, and based upon usage and

performance data from executed queries.

The following three chapters further enhance and explain each element of PETAS; the

query parser (Chapter 6), the similarity scoring mechanism (Chapter 7) and the dynamic

schema redefinition process (Chapter 8), and present the algorithms, implementations,

tests, and results.

- 78 -

Chapter 6 – Testing: Query Representation

6.1 Introduction

As described in Chapter 5, PETAS is split into three functional parts; the query parser, the

similarity scoring mechanism and schema selector, and the dynamic schema redefinition process.

This chapter deals exclusively with the query parser; Chapter 7 describes the similarity scoring

mechanism and schema selector; and Chapter 8 describes the dynamic schema redefinition process.

This chapter moves from the conceptual design of the alternative query representation design

presented in Chapter 5 and produces an algorithm that realises this design within a suitable

relational database environment. Recalling Chapter 5 Fig. 5.2 (reproduced below as Fig. 6.1), the

process takes as input a database query in the SQL language and outputs an adjacency matrix, or

cube:

Fig. 6.1: Overview of PETAS – matrix parser highlighted

In this chapter the algorithms to achieve this as pseudocode are presented, together with

implementations. Difficulties are discussed with the working implementations and areas that could

not be implemented fully are described. The experimental approach and experiment details are

provided. The results of these experiments are described, and finally, in the conclusions, the

outcomes are summarised and suggested improvements, and considerations for reproducibility and

future development, are given.

- 79 -

6.2 Design

This section expands upon the solution design for the query parser first described in Chapter 5.

SQL queries are multi-part, hierarchical objects with many properties and difficult to represent

mathematically. To solve this problem, the query must be represented in some way that allows

comparison against another one for similarity.

It is evident that a query can involve several relationships. Consider the query:

SELECT A.x, A.y, B.x FROM A INNER JOIN B ON A.z= B.z WHERE A.x = 10;

This query can be represented in the relational algebra like so:

z = B.z)A.x=10 A.x, A.y, B.x A ()() (  

This query consists of a projection of columns x and y from table A, and column x from table B

drawn from a selection with a predicate, based on two equi-joined relations. The predicate

conditions are that columns z in A and B must be identical, and that column x from table A must

be equal to 10. There is also an intersection of A on B, an equality relationship on A.z = B.z,

membership of A by A.x, A.y, A.z, and membership of B by B.x, B.z (B.y is never specified).

These can, using the new proposed method, be alternatively modelled as a set of relationships with

attributes. This means at a very basic level, a SQL query could be visualised as a kind of ‘query

molecule’ based solely on these relationships (Fig. 6.2).

Fig. 6.2: Visualising a query in three dimensions

- 80 -

Note, this diagram shows only the relationships between entities (A, B) and attributes (A.x, A.y,

A.z, B.x, B.z)), but this diagram is homomorphic to a directed graph. Directed graphs can be

represented as matrices - particularly ‘adjacency matrices’. These show, at a basic level, whether

any two nodes in a graph are connected by an edge.

An adjacency matrix can be calculated for the query above. First, each node, and what node it is

connected to (the direction), is listed as shown in Table 6.3.

Table 6.3: Example node relationship list

From the node list, the adjacency matrix can be built, where 1 represents ‘is a relationship’, 0

represents ‘no relationship’. The Y axis is ‘Node From’, the X axis ‘Node To’. Note that there is

no differentiation on attribute type at this stage, with the matrix having only two dimensions.

- 81 -

Table 6.4: Two-dimensional adjacency matrix

This matrix shown in Table 6.4 is useful but doesn’t take into account the type of relationship

(edge). It simply measures, based on the fact that a relationship or edge exists. The type of

relationship - hereafter called attribute type - can be a projection (SELECT), intersection (JOIN),

member (e.g. A.x is a member of A) or predicate (either a JOIN predicate like A.z = B.z or a

WHERE predicate like A.x = 10). These correspond to ZFC axiomatic set theory and the

relational operations defined by Codd. This new method breaks new ground not through the

definition of new set operations but by the representation of those operations in an adjacency

matrix form.

This problem is approached in the same way as the simple representation above. The attribute

type could be considered a dimension in its own right, on the Z-axis, as illustrated in Fig. 6.5:

Fig. 6.5: Attribute type on the Z-axis.

- 82 -

This is difficult to represent in a single matrix, since it could be considered as multiple two-

dimensional matrices - one matrix for each node from / node to set, for each attribute type.

However, although it is difficult to visualise, it is not difficult to represent as a multidimensional

array in code, and not difficult to conceptualise mathematically in Hilbert space [1] – Euclidean

space extended from 2 to infinite dimensions (in this case, three).

Therefore, this two-dimensional matrix can be built up from the simple adjacency matrix for

determining if there is an edge between two nodes to a more complex adjacency cube – adjacency

matrices extended along the Z-axis – to determine if there is a relationship/edge between two nodes

that is of a particular type (projection, intersection, member or predicate).

This allows the modelling of how similar two queries are at a lower level of granularity - i.e., is a

relationship a SELECT (projection or member), a JOIN (intersection / predicate), or a WHERE

(predicate)? This has some benefits: it reduces information loss in the translation from narrative

SQL text to computational construction, and it is speculated that accuracy in similarity scoring will

be improved through closer query matching.

Cubes are difficult to model in two-dimensional space, so one can visualise a three-dimensional

adjacency cube laid out as 4 side-by-side matrices (4 slices of the cube on the Z axis) with the

attribute type above it. Each attribute type (Join, Membership, Intersection or Predicate,

indicated by their initials) as a slice of the cube on the Z axis - a layered representation.

See Fig. 6.6 for this representation.

This approach can work for any number of dimensions in Hilbert space (although to visualise them

in more than three dimensions requires some mental creativity), which means that any number of

layered attribute properties could be included. This is useful because there are certain aspects of

each query which are ignored in the test query above – such as predicate variable and value (A.x =

10 for example); whether a projected attribute (A.x) has any transforms upon it (e.g. CAST(A.x

AS INT)) and what they are; dealing with INNER JOIN vs. OUTER JOIN; complex structures like

Common Table Expressions; and subqueries or nested queries have yet to be modelled.

There are ways forward to include more detail in this process. The first is to model the adjacency

matrices in a Hilbert space, an N-dimensional space where N > 3 and follow the same

process. However, the cost of computation would very quickly rise as the number of dimensions

increases. The degree of similarity between any two multidimensional cubes may also drop

significantly since the ratio of overlapping data points to the available volume of the cube will

reduce by an order of magnitude (since the volume of the cube has been increased by an order of

magnitude).

- 83 -

Fig. 6.6: 3D adjacency cube rendered in two dimensions

- 84 -

Another way to extend the model is to take inspiration from physics and consider real

molecules. Molecules bind to each other, so complex structures like subqueries could be represented

as a separate molecule with a bind on one or more nodes common to both. Thus, the adjacency

matrices could be calculated separately, and the similarity scores combined in a different way (e.g.,

weighted mean). This direction is not pursued in the remainder of this research but discussed

further in the conclusions later in this document.

6.2 Algorithmic Implementation

This process description can now be codified into an algorithm. The function should accept a

database query written in SQL as input, and output an object representing the data in the

expected format for an adjacency cube. To do this, a left-to-right parsing approach is taken as per

Knuth [2] and others, similar to the approach used to build a parse tree in current database

implementations (discussed in Chapter 3). However, rather than produce a parse tree, an internal

map of relationships with relationship types is produced, represented as a multidimensional array;

an object type supported by most, if not all, major programming languages.

Given an input database query, the following algorithm calculates the edges and types of edge,

ready to be transmuted into a directed graph.

The algorithm begins by collating the elements of the query between the SELECT and FROM

clauses. These are the projected elements of the query; those columns fetched from the database

and displayed to the user. This is Algorithm 6.7.

Algorithm 6.7: Extracting projection elements from a SQL query

Extract projection elements to list ‘edges’

define list 'edges' as empty list

define variable 'node' as empty untyped variable

define variable 'SELECTs' as empty string variable

define variable sqlQueryA as the input SQL query, rendered as a string

set SELECTs = substring of sqlQueryA between position 6 and up to

 but not including first instance of word 'FROM'

set SELECTs = SELECTs, trimmed of whitespace

loop

do while length of SELECTs > 0:

--if first char in SELECTs != ",":

----set node = node + first char in SELECTs

----set SELECTs = SELECTs from 2nd char to end

--else:

----set node = node, trimmed of whitespace

- 85 -

----to an unnamed 3-item list, append var 'node' from the first position

---- to the first instance of '.'; node; and the string 'PROJECTION'

----append this list as an element in list 'edges'

----set node to an empty untyped string

----set SELECTs = SELECTs from 2nd char to end

set node = node, trimmed of whitespace

to an unnamed 3-item list, append var 'node' from the first position

 to the first instance of '.'; node; and the string 'PROJECTION'

append this list as an element in list 'edges'

The input to Algorithm 6.7 is the SQL query, designated sqlQueryA.

Algorithm 6.7 simply loops through each object SELECTed in the query, identifies the object as a

projection upon the remainder of the query and outputs these facts to a multidimensional [1,3] list

or array.

The output of this process is a list with dimensions [1,3], each row representing a column or

database object that is SELECTed from the query; in the test query, this is A.x, A.y and B.x.

Next, the contents of the input query are parsed to extract the relations, or tables, from which

these projections are taken – the table names. These tables intersect in zero or more ways (no join

conditions mean no intersections other than on itself; several tables imply several intersections) so

each element is marked as an intersection in the output array. This proceeds as follows in

Algorithm 6.8.

Algorithm 6.8: Extracting membership elements from a SQL query

Extract FROM clause elements

define variable 'FROMs' as a substring of sqlQueryA between the first instances

 of 'FROM and 'WHERE'

set FROMs = FROMs, trimmed of whitespace

define variable 'nodeFrom' as an empty untyped variable

define variable 'nodeTo' as an empty untyped variable

define variable 'entities' and set as a substring of FROMs from first character

 to first occurrence of 'ON' or first occurrence of WHERE or end of string.

set nodeFrom as substring of entities from first char to first whitespace (first word)

set nodeTo as substring of entities from first occurrence of JOIN to end of string

set nodeTo = nodeTo, trimmed of whitespace

define variable nodeFromEntity set to value of nodeFrom (value assignment)

define variable nodeToEntity set to value of nodeTo (value assignment)

to an unnamed 3-item list, append nodeFrom, nodeTo and 'INTERSECTION'

append this list as an element in list 'edges'

#parse the JOIN predicates

define variable 'PREDICATEs' as an empty untyped variable

set PREDICATEs = substring of FROMs from first occurrence of ON to end of string,

 trimmed of whitespace

set nodeFrom = substring of PREDICATEs from first character to first occurrence of

whitespace

- 86 -

set PREDICATEs = substring of PREDICATEs from first occurrence of whitespace to end of

string,

 trimmed of whitespace

set nodeTo = substring of PREDICATEs from first occurrence of whitespace to end of string

to an unnamed 3-item list, append nodeFromEntity, nodeFrom and 'MEMBERSHIP'

append this list as an element in list 'edges'

to an unnamed 3-item list, append nodeToEntity, nodeFrom and 'MEMBERSHIP'

append this list as an element in list 'edges'

repeat both code blocks above, adjusting input variable sqlQueryA

 or var 'FROMs', for multiple JOIN predicates.

The input to Algorithm 6.8 is sqlQueryA (therefore Algorithms 6.7 and 6.8 could be run in

parallel). This algorithm extracts the JOIN clauses from the query and identifies the source (left)

and destination (right) for each JOIN. Predicates are not yet considered. This is done through

word-by-word parsing of the portion of the SQL query between the clause indicators FROM and

WHERE and is repeatable for multiple JOIN predicates.

The output of this algorithm is a [1,3]-shaped multidimensional array or list containing ordered

tuples of the source, destination and ‘INTERSECTION’ string for each intersection identified in the

query.

Algorithm 6.9: Extracting predicates from a SQL query

parse the WHERE clause

define variable 'WHEREs' as an empty untyped variable

set WHEREs = substring of sqlQueryA from first occurrence of 'WHERE' to end of string,

trimmed of whitespace

replace all semicolons in WHEREs with empty strings

define new variable 'andFlag' as Boolean-typed variable initialised to 0

define new variable 'orFlag' as Boolean-typed variable initialised to 0

if 'AND' in WHEREs:

--set andFlag = 1

if 'OR' in WHEREs:

--set orFlag = 1

further variable declarations

define variable 'leftSide' as an empty untyped variable

define variable 'rightSide as an empty untyped variable

define variable 'nodeFrom' as an empty untyped variable

define variable 'nodeTo' as an empty untyped variable

parse the WHERE clause in the case that it does contain Boolean expressions AND or OR

while exists 'AND' or 'OR' in WHEREs variable, do:

--while andFlag = 1

----set leftSide = substring of WHEREs from first character to first whitespace

----# check for primitives and set the right-hand side of the predicate accordingly

----if WHEREs contains the string '=':

------set rightSide = substring of WHEREs from the first occurrence of '=' to the first

------ occurrence of 'AND'

----if WHEREs contains the string '>':

------set rightSide = substring of WHEREs from the first occurrence of '>' to the first

------ occurrence of 'AND'

----if WHEREs contains the string '<':

- 87 -

------set rightSide = substring of WHEREs from the first occurrence of '<' to the first

------ occurrence of 'AND'

----if WHEREs contains the string '<>':

------set rightSide = substring of WHEREs from the first occurrence of '<>' to the first

------ occurrence of 'AND'

----# note this list can be extended to all legal primitives in SQL, including IN/LIKE,

---- >=, <=, IS, CONTAINS, EXISTS and so on

----# now assess to see if the right side is a column or a literal

----set nodeFrom = leftSide

----if rightSide can be converted without error to a real number

---- or rightSide contains a single quote ':

------set nodeTo = nodeFrom

----else if rightSide contains a full stop # (looks like a column name)

------set nodeTo = rightSide

----to an unnamed 3-item list, append nodeFrom, nodeTo and 'PREDICATE'

----append this list as an element in list 'edges'

----if the string 'AND' exists in WHEREs:

------set WHEREs = substring of WHEREs from the first occurrence of AND

------ to the end of string, trimmed of whitespace

----set andFlag = 1

----else:

------set andFlag = 0

----# end of inner loop

--# now parse the OR statements, if they exist, from the WHERE clause

-- (follows same pattern as ANDs)

--while orFlag = 1

----set leftSide = substring of WHEREs from first character to first whitespace

----# check for primitives and set the right-hand side of the predicate accordingly

----if WHEREs contains the string '=':

----if WHEREs contains the string '=':

------set rightSide = substring of WHEREs from the first occurrence of '=' to the first

------ occurrence of 'OR'

----if WHEREs contains the string '>':

------set rightSide = substring of WHEREs from the first occurrence of '>' to the first

------ occurrence of 'OR'

----if WHEREs contains the string '<':

------set rightSide = substring of WHEREs from the first occurrence of '<' to the first

------ occurrence of 'OR'

----if WHEREs contains the string '<>':

------set rightSide = substring of WHEREs from the first occurrence of '<>' to the first

------ occurrence of 'OR'

----# note this list can be extended to all legal primitives in SQL, including IN/LIKE,

---- >=, <=, IS, CONTAINS, EXISTS and so on

----# now assess to see if the right side is a column or a literal

----set nodeFrom = leftSide

----if rightSide can be converted without error to a real number

---- or rightSide contains a single quote ':

------set nodeTo = nodeFrom

----else if rightSide contains a full stop # (looks like a column name)

------set nodeTo = rightSide

----to an unnamed 3-item list, append nodeFrom, nodeTo and 'PREDICATE'

----append this list as an element in list 'edges'

----if the string 'OR' exists in WHEREs:

------set WHEREs = substring of WHEREs from the first occurrence of OR

------ to the end of string, trimmed of whitespace

----set orFlag = 1

----else:

------set orFlag = 0

----# end of inner loop

end of loop

in the case of a simple WHERE clause with no additional predicates

- 88 -

set nodeFrom = substring of WHEREs from first char to first occurrence of whitespace,

 trimmed of whitespace

set WHEREs = substring of WHEREs from first occurrence of whitespace to end of string,

 trimmed of whitespace

if rightSide can be converted without error to a real number

 or rightSide contains a single quote ':

--set nodeTo = nodeFrom

else if rightSide contains a full stop # (looks like a column name)

--set nodeTo = WHEREs

to an unnamed 3-item list, append nodeFrom, nodeTo and 'PREDICATE'

append this list as an element in list 'edges'

Algorithm 6.9 parses the WHERE clause. It first looks for the condition that AND or OR exist in

the predicate list within the query (after the WHERE clause) indicating multiple predicates to be

parsed; if this is the case, the predicates are extracted separately, the left-hand and right-hand

elements of each predicate pair are extracted according to the primitive used, and a [1,3]

multidimensional array or list captures output as left-side (nodeFrom), right-side (nodeTo) and

‘PREDICATE’. In the case that a single predicate is used (no AND or OR statement is used), the

same process is used but once only. Algorithm 6.9 outputs the list ‘edges’ as a [1,3]

multidimensional array and thus can be run in parallel alongside Algorithms 1 and 2 if the ‘edges’

arrays are concatenated afterwards.

The output array ‘edges’ is now used to build the adjacency cube, assuming Algorithms 6.7 - 6.9

have been processed. To do this a series of 2-dimensional lists are built, one for each attribute

type, then inserted into a 3-dimensional list using simple if-then control flow logic. It would be

better for performance to execute this operation in SQL as it has set support i.e. parallelism rather

than iterating through each list, however the method is irrespective providing the outcome is the

same and OOPL languages have threading which implies parallelism could be used in the iterative

method.

Algorithm 6.10: Function variant of query parser

function buildEdgeArray (sqlQueryA):

 <Algorithm 1>

 <Algorithm 2>

 <Algorithm 3>

return edges

Algorithm 6.10 wraps the edge list generation code (Algorithms 6.7 – 6.9) in a simple function,

taking sqlQueryA as input and outputting a single multidimensional array, ‘edges’, size [n,3].

The next step is to convert this edges array to an adjacency cube. Algorithm 6.11 describes this

process, which takes an edge list as input, sorts and deduplicates the list, iterates through the list,

identifies all pairs of relationships per attribute type and appends these to an output list, ‘cube’.

- 89 -

Algorithm 6.11: Converting an edge list to an adjacency cube

Sort the edge list

Deduplicate the edge list

For each type of attribute JOIN, INTERSECTION, MEMBERSHIP, PREDICATE:

 For each nodeFrom/nodeTo (data point in the current attribute type slice):

 If a relationship exists in edges for the current attribute type, mark with a

1

 Else mark with a 0

 Once complete, append an [n, 4] list to ‘cube’, a new multidimensional list:

 [nodeFrom, nodeTo, attributeType, value (0 or 1)]

The next step is to use these cubes as input to the similarity scoring function. This is discussed

further in Chapter 8.

6.3 Practical Implementation

The following Code Listings 6.12 – 6.15 show the implementation of Algorithms 6.7 – 6.10 in

section 6.2. These were implemented in Python 3.

Code Listing 6.12: Algorithm 6.7 in Python

Extract WHERE clause elements

SELECTs = sqlQueryA[sqlQueryA.find("SELECT")+6:sqlQueryA.find("FROM")].strip();

edges = [];

node = "";

while len(SELECTs) > 0:

 if SELECTs[0:1] != ",":

 node = node + SELECTs[0:1];

 SELECTs = SELECTs[1:];

 else:

 node = node.strip();

 edges.append([node[:node.find(".")], node, "PROJECTION"]);

 node = "";

 SELECTs = SELECTs[1:];

node = node.strip();

edges.append([node[:node.find(".")], node, "PROJECTION"]);

Code Listing 6.13: Algorithm 6.8 in Python

Extract FROM clause elements

FROMs = sqlQueryA[sqlQueryA.find("FROM")+4:sqlQueryA.find("WHERE")].strip();

nodeFrom = "";

nodeTo = "";

entities = FROMs[0:FROMs.find("ON")].strip();

- 90 -

nodeFrom = entities[0:entities.find(" ")];

nodeTo = entities[entities.find("JOIN")+4:].strip();

nodeFromEntity = nodeFrom;

nodeToEntity = nodeTo;

edges.append([nodeFrom, nodeTo, "INTERSECTION"]);

edges.append([nodeTo, nodeFrom, "INTERSECTION"]);

deal with JOIN predicates (repeatable)

PREDICATEs = FROMs[FROMs.find("ON")+2:].strip();

nodeFrom = PREDICATEs[0:PREDICATEs.find(" ")];

PREDICATEs = PREDICATEs[PREDICATEs.find(" ")+1:].strip();

nodeTo = PREDICATEs[PREDICATEs.find(" ")+1:];

add the memberships

edges.append([nodeFromEntity, nodeFrom, "MEMBER"]);

edges.append([nodeToEntity, nodeTo, "MEMBER"]);

add the JOIN predicate

edges.append([nodeFrom, nodeTo, "PREDICATE"]);

Code Listing 6.14: Algorithm 6.9 in Python

deal with WHERE clause

WHEREs = sqlQueryA[sqlQueryA.find("WHERE")+5:].strip();

WHEREs = WHEREs.replace(";","");

andFlag = 0;

orFlag = 0;

deal with multiple clauses (only AND and OR supported)

if "AND" in WHEREs:

 andFlag = 1;

if "OR" in WHEREs:

 orFlag = 1;

while "AND" in WHEREs or "OR" in WHEREs:

 while andFlag == 1:

 leftSide = WHEREs[0:WHEREs.find(" ")];

 if "=" in WHEREs:

 rightSide = WHEREs[WHEREs.find("=")+1:WHEREs.find("AND")].strip();

 if ">" in WHEREs:

 rightSide = WHEREs[WHEREs.find(">")+1:WHEREs.find("AND")].strip();

 if "<" in WHEREs:

 rightSide = WHEREs[WHEREs.find("<")+1:WHEREs.find("AND")].strip();

 if "<>" in WHEREs:

 rightSide = WHEREs[WHEREs.find("<>")+2:WHEREs.find("AND")].strip();

 # Assess to see if right side is a column or a literal

 nodeFrom = leftSide;

 if rightSide.isdigit() == True: # is a number

 nodeTo = nodeFrom;

 elif "'" in rightSide: # is a string

 nodeTo = nodeFrom;

 elif "." in rightSide: # looks like a column name

 nodeTo = rightSide;

 edges.append([nodeFrom, nodeTo, "PREDICATE"]);

 if "AND" in WHEREs:

 WHEREs = WHEREs[WHEREs.find("AND")+3:].strip();

 andFlag = 1;

 else:

 andFlag = 0;

 if "OR" in WHEREs:

 orFlag = 1;

 while orFlag == 1:

 leftSide = WHEREs[0:WHEREs.find(" ")];

- 91 -

 if "=" in WHEREs:

 rightSide = WHEREs[WHEREs.find("=")+1:WHEREs.find("OR")].strip();

 if ">" in WHEREs:

 rightSide = WHEREs[WHEREs.find(">")+1:WHEREs.find("OR")].strip();

 if "<" in WHEREs:

 rightSide = WHEREs[WHEREs.find("<")+1:WHEREs.find("OR")].strip();

 if "<>" in WHEREs:

 rightSide = WHEREs[WHEREs.find("<>")+2:WHEREs.find("OR")].strip();

 # Assess to see if right side is a column or a literal

 nodeFrom = leftSide;

 if rightSide.isdigit() == True: # is a number

 nodeTo = nodeFrom;

 elif "'" in rightSide: # is a string

 nodeTo = nodeFrom;

 elif "." in rightSide: # looks like a column name

 nodeTo = rightSide;

 edges.append([nodeFrom, nodeTo, "PREDICATE"]);

 if "OR" in WHEREs:

 WHEREs = WHEREs[WHEREs.find("OR")+2:].strip();

 orFlag = 1;

 else:

 orFlag = 0;

 # no ANDs or ORs, simple single WHERE

nodeFrom = WHEREs[:WHEREs.find(" ")].strip();

WHEREs = WHEREs[WHEREs.find(" ")+3:].strip();

if WHEREs.isdigit() == True:

 nodeTo = nodeFrom;

elif "'" in WHEREs: # is a string

 nodeTo = nodeFrom;

elif "." in WHEREs: # looks like a column name

 nodeTo = WHEREs;

edges.append([nodeFrom, nodeTo, "PREDICATE"]);

Code Listing 6.15: Algorithm 6.10 in Python

def buildEdgeArray (sqlQueryA):

 <Code Listing 1>

 <Code Listing 2>

 <Code Listing 3>

return edges;

Fig. 6.16 shows working example output from Code Listing 6.15 using the test query from the

beginning of this chapter.

- 92 -

Fig. 6.16: Example screenshot from edge list builder

Code Listing 6.17 shows the working implementation of Algorithm 6.11.

Code Listing 6.17: Conversion to multidimensional array

deduplicate edges

foo = [];

 for i in edges:

 if i not in foo:

 foo.append(i);

 edges = foo;

get distinct list of nodes from edges

distinctNodes = [];

counter = 0;

for i in edges:

 if i[0] not in distinctNodes:

 distinctNodes.append(i[0]);

 if i[1] not in distinctNodes:

 distinctNodes.append(i[1]);

distinctNodes.sort();

projection = [];

intersection = [];

member = [];

predicate = [];

appendFlag = 0;

build the projection list:

for i in distinctNodes:

 for j in distinctNodes:

 for k in range (0, len(edges)):

 if i == edges[k][0] and j == edges[k][1] and edges[k][2] == "PROJECTION":

 projection.append([i,j,1]);

 appendFlag = 1;

 if appendFlag == 0:

 projection.append([i,j,0]);

- 93 -

 appendFlag = 0;

build the intersection list

for i in distinctNodes:

 for j in distinctNodes:

 for k in range (0, len(edges)):

 if i == edges[k][0] and j == edges[k][1] and edges[k][2] == "INTERSECTION":

 intersection.append([i,j,1]);

 appendFlag = 1;

 if appendFlag == 0:

 intersection.append([i,j,0]);

 appendFlag = 0;

build the member list

for i in distinctNodes:

 for j in distinctNodes:

 for k in range (0, len(edges)):

 if i == edges[k][0] and j == edges[k][1] and edges[k][2] == "MEMBER":

 member.append([i,j,1]);

 appendFlag = 1;

 if appendFlag == 0:

 member.append([i,j,0]);

 appendFlag = 0;

build the predicate list

for i in distinctNodes:

 for j in distinctNodes:

 for k in range (0, len(edges)):

 if i == edges[k][0] and j == edges[k][1] and edges[k][2] == "PREDICATE":

 predicate.append([i,j,1]);

 appendFlag = 1;

 if appendFlag == 0:

 predicate.append([i,j,0]);

 appendFlag = 0;

merge the lists into a cube

cube = [];

cube.append(projection);

cube.append(intersection);

cube.append(member);

cube.append(predicate);

Code Listing 6.17 can then be wrapped in a function, as shown in Code Listing 6.18:

Code Listing 6.18: Functionalised adjacency cube build code

def buildAdjacencyCube(edges):

 <Code Listing 6.17>

return cube;

This enables the process to start with an input, sqlQueryA, turn it into an edge list, and transform

the edge list into an adjacency cube through two function calls.

Note that ‘cube’ is a nested list.

- 94 -

• Level 0: Contains 4 lists, one for each NodeFrom/NodeTo/Value tuple.

• Level 1: Contains a NodeFrom/NodeTo/Value tuple.

To refer to or query a particular element (Python is zero-indexed), as an example:

> print(cubeA[2][8])

['A.x', 'A', 0]

There are 64 (square of 8 distinct nodes) lists in Level 1 multiplied by 4 attribute types in level 0,

equalling 256 values in the adjacency cube for the test query.

6.4 Experimental Design

Microsoft SQL Server was used to write a SQL script to generate 1,000 SQL queries, ranging in

complexity. For each of the queries, the code was augmented with exception handling and

performed two sets of tests; the first, to establish the proportion of queries for which the

implementation is able to parse without error, a simple statistical count; and the second, the

duration of the process in milliseconds, to assess how much overhead the process might place on an

RDBMS if implemented as an augmentation.

The testing in this area is tightly bound with the experimental design and testing presented in

Chapter 7 (similarity scoring). The algorithms are used from this chapter in the larger round of

testing against real-life data in Chapter 7, and to that end the random query generator was

employed for this set of tests suitable for further use against the real-life data examined later,

namely Chicago crime data by geographic region in a limited range of years. More information on

this data set is presented in Chapter 7.

The code listing for the SQL-based random query generator is shown in Code Listing 6.19.

Code Listing 6.19: Random query generator for Chicago crime data

SET NOCOUNT ON

GO

DROP PROCEDURE IF EXISTS dbo.chicagoQueryGenerator

GO

CREATE PROCEDURE dbo.chicagoQueryGenerator

AS BEGIN

DECLARE @columnCount TINYINT

DECLARE @counter TINYINT = 0

- 95 -

DECLARE @thisColumn VARCHAR(255)

DECLARE @select VARCHAR(500) = 'SELECT '

DECLARE @used TABLE ([name] VARCHAR(255))

SET @columnCount = CEILING((

 SELECT TOP 1 c.[column_id]

 FROM sys.columns c

 INNER JOIN sys.tables t ON c.object_id = t.object_id

 WHERE t.[name] = 'chicagobase'

 ORDER BY NEWID()) / 2.0)

WHILE @counter < @columnCount

BEGIN

 SET @thisColumn = (

 SELECT TOP 1 c.[name]

 FROM sys.columns c

 INNER JOIN sys.tables t ON c.object_id = t.object_id

 LEFT JOIN @used u ON c.[name] = u.[name]

 WHERE u.[name] IS NULL

 AND t.[name] = 'chicagobase'

 ORDER BY NEWID())

 INSERT INTO @used VALUES (@thisColumn)

 SET @select = @select + @thisColumn + ', '

 SET @counter += 1

 END

 SET @select = LEFT(@select, LEN(@select) - 1) + ' '

 DECLARE @from VARCHAR(500) = ' FROM chicagoBase' + ' '

 DECLARE @where VARCHAR(500) = 'WHERE (1=1)' + ' '

 -- pick a random number of where clauses, between 0 and 2

 DECLARE @numOfWheres TINYINT = (SELECT ABS(CHECKSUM(NEWID()) % 3))

 DECLARE @colName VARCHAR(255), @dType VARCHAR(255), @val VARCHAR(255)

 DECLARE @operator TINYINT, @letters TINYINT

 WHILE @numOfWheres > 0

 BEGIN

 -- pick a random column from the chicagoBase table

 SELECT @colName = c.[name], @dType = y.[name]

 FROM sys.columns c

 INNER JOIN sys.types y ON c.system_type_id = y.system_type_id

 WHERE c.object_id = OBJECT_ID('chicagoBase')

 AND c.column_id = (SELECT ABS(CHECKSUM(NEWID()) %

 (SELECT COUNT(*) FROM sys.columns c

 WHERE c.object_id = OBJECT_ID('chicagoBase')) + 1)

)

 -- now select a random value corresponding to the datatype of

 -- the randomly chosen column

 IF @dType = 'bit' SET @val = CAST(ABS(CHECKSUM(NEWID()) % 2) AS

VARCHAR(255))

 IF @dType LIKE ('%tinyint%')

 SET @val = CAST(ABS(CHECKSUM(NEWID()) % 255) AS VARCHAR(255))

 IF @dType = 'datetime'

 SET @val = '''' + CONVERT(VARCHAR,

DATEADD(MINUTE,(ABS(CHECKSUM(NEWID()))

 % 2629800) * -1, GETDATE()), 120) + '''' -- any time in last 5 years

 IF @dType IN ('decimal', 'numeric', 'float') SET @val =

 CAST((ABS(CHECKSUM(NEWID())) % 5000) +

 ((ABS(CHECKSUM(NEWID())) % 100)/100.0) AS VARCHAR(255))

 IF @dType IN ('varchar') BEGIN

 SET @val = ''

 SET @letters = ABS(CHECKSUM(NEWID())) % 10 + 1

 WHILE @letters > 0 BEGIN

 SET @val = @val + CHAR(ABS(CHECKSUM(NEWID())) % 26 + 96)

- 96 -

 -- up to 10 random lowercase ASCII characters

 SET @letters -= 1

 END

 SET @val = '''' + @val + ''''

 END

 -- construct the WHEREs

 SET @operator = ABS(CHECKSUM(NEWID())) % 4 + 1

 SET @where = @where + 'AND ' + @colName + ' ' +

 CASE WHEN @operator = 1 THEN '='

 WHEN @operator = 2 AND @val NOT LIKE ('%''%') THEN '>'

 WHEN @operator = 2 AND @val LIKE ('%''%') THEN '='

 WHEN @operator = 3 AND @val NOT LIKE ('%''%') THEN '<'

 WHEN @operator = 3 AND @val LIKE ('%''%') THEN '='

 WHEN @operator = 4 THEN '!=' END

 SET @where = @where + ' ' + @val + ' '

 SET @numOfWheres -= 1

 END

 -- remove the WHERE (1=1) placeholder

 IF @where NOT LIKE ('% AND %')

 SET @where = REPLACE(@where, 'WHERE (1=1) ', '')

 ELSE

 SET @where = REPLACE(@where, 'WHERE (1=1) AND', 'WHERE')

 -- concatenate into a statement

 DECLARE @output VARCHAR(1000) = @select + @from + ISNULL(@where,'') + ';'

 SELECT @output

 END

GO

Fig. 6.20 shows a screenshot illustrating some of the generated queries:

Fig. 6.20: Randomly generated queries against the Chicago data set

- 97 -

6.5 Testing and Results

First, 1,000 random queries was created using the generator against the Chicago crime data set,

about which more details are provided in the next chapter. Of these 1,000 queries, 947 were valid;

53 were manually removed with parsing errors (success rate of 94.7%).

Each query in this set was then executed against the adjacency cube generator, noting the presence

or not of an exception after the edge list generator, and after the cube generator, respectively. The

duration of each conversion from query to adjacency cube was measured in milliseconds. Table

6.21 and Fig. 6.22 below illustrate the findings.

Table 6.21: Functional testing of query to cube transformation

Random queries successfully generated 947

Random queries unsuccessfully generated 53

Success rate 94.7%

Edge lists successfully generated 947

Edge lists unsuccessfully generated 0

Success rate 100.0%

Adjacency cubes successfully generated 947

Adjacency cubes unsuccessfully generated 0

Success rate 100.0%

Fig. 6.22: Duration statistics for query to cube transformation

- 98 -

Of the 947 queries randomly generated, 100% were successful in edge generation and 100% were

subsequently successful in cube generation.

Durations ranged from 0 to 9ms in whole increments (microsecond duration granularity was

unavailable in the test harness): the mean average duration was 1.8ms with 1.5ms standard

deviation. Approximately 634 executions, or 67%, completed within 1 standard deviation of the

mean duration.

Through examination of the output artefacts, it was noted that in some cases objects within queries

were mis-parsed. Most commonly, this occurred when end-of-line characters were encountered;

where multiple JOIN conditions were specified in different syntax to that expected; and so on.

This led to duplicate edges listed in some output artefacts, or edges listed minus the first or last

character of their names. Inconsistent production of MEMBERSHIPs was also noted in the slice.

Through trial and error, most of these issues were virtually eliminated for the next round of testing,

presented in Chapter 7, although more work is required to extend this parser to the whole range of

SQL syntax.

6.6 Conclusions

A series of short algorithms were constructed to parse SQL database queries into subsets of

projections, intersections, memberships, and predicates. In general, the construction of the

algorithms, the transition from algorithms to implementations, and the testing was successful;

generation of adjacency cubes was successful and typically took place in an average of less than 2ms

per query, well within the expected runtime of a query within an RDBMS; the principles of

transitioning from a narrative object such as a SQL query to a comparable and computable form,

the multidimensional array, were demonstrated; and the algorithms were demonstrated to be fairly

robust.

However, there were some issues encountered, particularly in parsing. Parsers, as a superset of

database query parsers, have a rich and detailed history in the research literature, with giants in

the field such as Donald Knuth [2] devoting considerable years to their construction and correct

implementation. It is unlikely that a perfect query parser could be recreated within the confines of

a single research project, and to that extent the artefact does not have the full range of SQL

support that would be ideal; for example, it will not support common table expressions; non-

primitive comparison operators (IN, LIKE, BETWEEN); non-standard JOIN types, OUTER or

CROSS APPLY operations, or JOINs with AND or OR conditions (these can be specified in the

WHERE clause). Occasional parsing errors in object names were observed, and in some cases

- 99 -

MEMBERSHIPs in particular were not generated correctly, although it was validated and verified

that all other attribute types were generated successfully. Additional whitespace, end-of-line

characters and other terminators also frustrated the parser.

For the benefit of better quality, in the future, the use of an industry-standard parser is proposed

which benefits from the long tail of research and development from the community, such as GNU

Bison [3] (used in MySQL). The benefits of such a parser were discussed in Chapter 3, section

3.5.3. The outputs of such a parser, the parse tree, could be used as inputs for the adjacency cube

generator.

6.7 Chapter Summary

In this chapter, the solution design for the query parser was extended, incorporating the adjacency

cube generation mechanism, from the theoretical solution described in Chapter 5 to a set of

algorithms. The experimental approach to testing was outlined, generating 1,000 realistic queries

against a data set and applying the algorithmic designs to a set of implemented scripts in Python.

The scripts were tested against these generated queries and the rate of exceptions (0%) and the

duration of the process (average 1.8ms per execution) were recorded. Deficiencies were also

observed in the implementation that are solvable either by developing the parser further to be more

robust or incorporating an industry-standard parser which has the benefit of many years of research

and development. In doing so, adjacency cubes could be generated directly from the parse tree

output.

In the next chapter, the solution is extended into the similarity scoring mechanism and the test

data set is further introduced. The algorithms and code listings are incorporated from this chapter

with extended algorithms and code for K-nearest-neighbour driven similarity scoring to present an

implementation of the end-to-end real-time mechanism of PETAS. The performance and outputs

are tested, and the outcomes of the tests are presented.

- 100 -

Chapter 7 – Testing: Similarity Scoring and Schema Selection

7.1 Introduction

In this chapter, the ability to successfully generate adjacency cubes from input SQL database

queries as described in Chapter 6 is assumed, and the similarity scoring mechanism and the schema

selector as described are implemented and tested for the next part of the solution.

As recalled from the solution design, the next steps between the generation of an adjacency cube

and handing off a new database query to the ordinary query engine are the execution of the scoring

mechanism to generate a score based on the similarity or otherwise between two input adjacency

cubes; the KNN selector mechanism, which takes as input pairs of adjacency cubes and clusters

similar adjacency matrices according to score distance; the schema classifier, which takes as input

the adjacency cube for the query at hand and selects, using the KNN selector, the appropriate

schema for it based on successful schema classifications of prior queries, according to score distance;

and finally the query mapper, which works independently to adjust the query at hand to fit the

recommended schema to ensure both syntactic and functional validity.

7.1.1 Similarity scoring

First, similarity scoring is addressed. As described in Chapter 5, a relative score can be calculated

between two adjacency cubes A and B, which consist of X-Y-Z intersections, each marked with 0 or

1 depending on whether a relationship exists between the node-node-attribute type of the tuple, by

comparison of the structure of each query. This structure does not take into consideration the

actual objects; the cube A, projecting 5 columns from relation R with no joins or predicates, would

look structurally similar to cube B, projecting a different 5 columns from relation R. However,

from a structural perspective these two cubes are similar and consequently would merit a high

similarity score. The strictly structural approach needs augmentation with a method that

compares the objects within the query, adjusting the score accordingly.

First, two example queries are considered, Q1 and Q2. These queries are listed below. The

adjacency cube transformation is used to turn these two queries from SQL to edge list to cube.

This process is shown in Tables 7.1 and 7.2 below, and in Figs. 7.3 and Fig. 7.4.

- 101 -

Query 1: SELECT A.x, A.y, B.x FROM A

INNER JOIN B ON A.z = B.z WHERE A.x = 10;

Query 2: SELECT A.x, B.z FROM A

INNER JOIN B ON A.y = B.y WHERE A.x < 5 AND B.y > 10;

Tables 7.1 and 7.2: Edge lists for Query 1 and Query 2

Fig. 7.3: Adjacency cube for Query 1

Fig. 7.4: Adjacency cube for Query 2

Next, it is illustrated how to obtain a third cube (in the solution description in Chapter 5, this is

cube C3 where the cubes above are C1 and C2). This is achieved by calculating the Hamming

distance between each cube.

As recalls Section 5.5.3 in Chapter 5, Equations (6) and (7), which are reproduced as (1) and (2)

for this chapter, it was stated the cubes must be padded so they occupy the same dimensions, then

- 102 -

for each intersection of C1 and C2, calculation of the appropriate C3 result is done using the

following formula (1), which simply subtracts one value from the other at each intersection and

squares the result (which has the effect of applying an absolute function to the output, eliminating

negative 1):

 (1)

Thus, Equation (1) is applied to the two adjacency cubes which renders the following resulting

adjacency cube (Fig. 7.5):

Fig. 7.5: Resulting adjacency cube C3

Equation (2) is now applied to calculate the similarity score – the sum of all 1s in C3 is 10, divided

by 2 is 5 (the numerator in (2)); the cardinality of the edge list is 9 (the denominator in (2));

dividing 5 by 9 then subtracting this number from 1 results in 0.444 (on a scale of 0 to 1), meaning

44.4% similarity between the queries, to 1 decimal place.

3 (, ,)

3

() / 2
1

| |

i j kC
S

C

 
= −  

 


 (2)

This process is now reproducible on-demand. Two queries can be consumed and a single similarity

score can be produced.

Next, one must consider how these new functions to compare some incoming query A with all

queries in the query cache can be used, ranking the latter using K-nearest neighbour to isolate the

most similar queries. In doing so, the metadata can be checked on each of those queries and a

majority vote conducted to determine which sub-schema selection is most appropriate for query A.

To do so, an independent query cache table is needed that can store metadata for use in the new

process. In this query cache, the text, assigned schema ID, mapped query text, last execution

duration and query weight for each query can be stored. These attributes will be used in the main

body of the process.

- 103 -

Fig. 7.6: Similarity scoring and query mapper process flow

- 104 -

Fig. 7.6 shows the process flow for the similarity scoring mechanism, classifier and query mapper.

The components not yet discussed, shown in Fig. 7.6, are the KNN weighted classifier and schema

selector; these components extend the initial presentation of the solution in Chapter 5 and are

detailed algorithmically in the next section before demonstration through code in section 7.3.

7.2 Algorithmic Implementation

It is now sought to integrate the similarity scoring process into the algorithms so far for PETAS.

To do this, the algorithms presented in Chapter 6 are extended to allow for edge list and adjacency

cube generation for two cubes. This is done by extending the inputs to consume sqlQueryA,

sqlQueryB and a flag indicating which query is to be transformed into the edge list/adjacency cube.

In doing so, code re-use is improved and wrapper code is simplified. However, the base algorithm

remains the same; only the inputs change, so the algorithm is not re-presented here. Please see

Chapter 6.

The similarity scoring mechanism requires algorithmic illustration. As inputs, it takes two

complete adjacency cubes, passed as objects. Each object is a multidimensional list or array. As

output, it computes a similarity score between 0 and 1 to 2 decimal places.

Algorithm 7.7 below shows the structure of this algorithm:

Algorithm 7.7: The similarity scoring algorithm

(inputs: cubeA of type object, cubeB of type object)

calculate Hamming distance

initialise integer variable ‘hamming’ = 0

initialise integer variable cubeAEdgeCount = 0

initialise integer variable cubeBEdgeCount = 0

begin dim-0 loop

for i in range 0 to the length of cubeA (max cubeA 0-dimension index):

--# begin dim-1 loop

----for j in range 0 to the length of the cubeA 1-dimension index:

------# begin dim-2 loop

--------for k in range 0 to the length of the cubeA 2-dimension index

----------if cubeA (i, j, k) value is not equal to cubeB (i, j, k) value then

------------increment hamming += 1

----------if cubeA (i, j, k) value equals 1 then

------------increment cubeAEdgeCount += 1

----------if cubeB (i, j, k) value equals 1 then

------------increment cubeBEdgeCount += 1

------# end dim-2 loop

----# end dim-1 loop

--# end dim-0 loop

initialise integer variable ‘maxEdges’, no value

set maxEdges to the max of cubeAEdgeCount, cubeBEdgeCount

initialise real number variable ‘similarity’ to no value

set similarity = hamming / 2.0 divided by maxEdges, rounded to 2 d.p.

return similarity to caller

- 105 -

This algorithm steps through the first cube of two on a dimension-by-dimension basis; for every

value, the corresponding X-Y-Z co-ordinate in the second cube is looked-for and compared; if the

values are not equal then the Hamming distance is incremented by 1. For efficiency, these loops

also count the number of edges in the cubes and set the maximum of both as the denominator of

the similarity scoring equation.

Next, the table structure of the new query cache used for classification and schema mapping is

presented, shown in Table 7.8.

Table 7.8: Query cache table design

Column Name Data Type
Max

Length/Value
Description

QueryID INTEGER 0-2^31-1
Surrogate primary key;

identity column.

QueryTextOriginal NVARCHAR
4,000 + MAX

(row overflow)

Holds the original query

text.

QueryWeight DOUBLE/REAL

0-2^31-1

(scale 16,

precision 4)

Holds a real number

representing query weight

to be used in the KNN

classifier.

AssignedSchemaID SMALL INTEGER 0-32768

Pointer to the schema ID

which ran this query most

efficiently.

QueryTextNew NVARCHAR
4,000 + MAX

(row overflow)

Holds the new, mapped

query text to the

indicated SchemaID.

LastExecution

DurationSeconds
INTEGER 0-2^31-1

Holds the last execution

duration of the new query

form in whole seconds,

rounded.

In a real implementation, the query cache would require populating with recently-executed queries

from the inbuilt query cache (or re-execute the queries as they arrive, asynchronously, and collect

the metadata). For the purposes of testing, this obliges the initial generation of a set of test

queries, and the creation of a process to execute these test queries against a database, re-execute

them against one or more alternative schemas, and collect the resultant metadata. This process is

not described here as it is detailed in the next section; instead, a fully-populated cache table is

assumed,, and the presence of both a database and a list of alternative sub-schemas available to

select from is also assumed (Chapter 8 details this dynamic schema definition process).

Given the existence of the cache, the database and the schemas to select from, the KNN classifier is

examined. This runs in real-time immediately after the adjacency cube generator; the KNN

classifier calculates the similarity score for query A against all queries in the cache, identifies the

closest-matching queries and selects the most appropriate schema.

- 106 -

Fig. 7.9 illustrates the concept of the KNN classifier. The beige circle is query A, the query at

hand; all other circles are other, previously-run queries from the cache. Each pair of query A/query

from the cache has a similarity score, calculated using this method. These scores are arranged on a

1-dimensional plane. An arbitrary K number of queries with the highest similarity scores to query

A (here, K=3) ‘vote’ to assign a schema ID to query A; e.g., if query B has schema ID 1, query C

schema ID 3 and query D schema ID 1, then the majority verdict is schema ID 1 and query A is

executed against this schema.

Fig. 7.9: The KNN classifier concept

Algorithm 7.10 shows first how the query cache is looped through, calculating similarity scores

upon which to run the KNN classifier. The availability of the ‘similarity’ function (Algorithm 7.10)

is assumed, and the cache table, named ‘querycache’, and a list is output with the query ID for

each query in the table and the similarity score when compared to query A.

Algorithm 7.10: Looping through the query cache

input: queryA (SQL text of query in hand)

initialise new array/list 'comparison' with no elements

initialise new untyped variable 'similarity'

initialise new integer typed variable 'errorCount' and set to 0

initialise new integer typed variable 'queryXID' and set to nothing

for queryX in querycache:

 set currentQueryID to query ID of queryX in querycache table

 try:

 call function similarityFunction (queryA, queryX), output to 'similarity'

 write (queryXID, similarity) as [1,2] object to array 'comparison'

 catch:

- 107 -

 increment errorCount += 1

return comparison

Algorithm 7.10 outputs an array/table consisting of two columns, queryXID and a similarity score

(a real number).

This can then be used as input to the next stage, which is to find the most similar queries to the

query at hand. At this juncture, weighting is introduced; every query in the query cache has a

weight attached, defaulting to 1. The weight is looked up from the query cache table, before

multiplying the similarity score by this weight and re-ordering the list. The weights are affected by

how accurate or useful the query has been previously at correctly identifying a sub-schema where

the query runs faster than against the base schema.

Algorithm 7.11 illustrates the process. The output is query execution for the caller and an entry

into the query cache process with the last execution duration time.

Algorithm 7.11: Finding similar queries

input: 'comparison' array [2, n] comprising of a list of query IDs and similarity scores

to query A

for each query ID and similarity score pair in 'comparison':

--fetch the 'queryWeighting' for the query ID from the query cache

--multiply the similarity score by the query weighting

--write back the query ID and the resulting similarity score, overwriting the active pair

sort the array by descending similarity

define variable k as a typed variable and initialise to 3

define variable 'neighbours' as a typed array variable, empty

set neighbours to be the top K dim-0 elements in 'comparison' (query IDs), as ordered

define variable 'csv' as a typed list variable, empty

for each query id in neighbours:

--fetch the 'associatedSchemaID' matching query ID from the query cache

--append the schema ID as a new element in array csv

initialise variable 'verdict' as an empty untyped variable

set verdict to the element in 'csv' with the highest count (cardinality)

begin query timer

execute the query against the schema id specified in 'verdict'

end query timer

write back query execution metadata to query cache table

write back K nearest neighbours, query ID for query in hand and last execution duration

--to table ‘querystack’ for asynchronous assessment

Next, an asynchronous process is specified which reads the latest queries entered into the query

stack table (the output of Algorithm 3). The query stack table is a temporary table which stores

the query IDs of the nearest neighbours identified and the execution time of each query. The

process uses this data to re-execute the query against the base schema and sends the results to

/dev/null (no output). The query execution is timed. Should the query run faster against an

- 108 -

alternative schema than the base schema, the query weighting for the neighbours that specified the

alternative schema is incremented by some constant, e.g. 0.1; else, in the vice versa case, the query

weighting is decremented by 0.1. With repeated executions, this promotes query importance in the

cache for queries that most often closely match inbound queries while naturally filtering out queries

which are singular and do not routinely match inbound queries. Periodically, queries are removed

from the cache that reach a certain negative threshold T.

Table 7.12 shows the table structure for the query stack and Algorithm 7.13 illustrates this process.

Table 7.12: Query stack table design

Column Name Data Type
Max

Length/Value
Description

rid INTEGER 0-2^31-1
Surrogate primary key;

identity column.

queryTextOriginal NVARCHAR
4,000 + MAX

(row overflow)

Holds the original query

text.

queryTextNew NVARCHAR
4,000 + MAX

(row overflow)

Holds the new query text

for the query, mapped to

the chosen schema

n1 INTEGER 0-2^31-1
Pointer to the query ID of

the first nearest neighbour

n2 INTEGER 0-2^31-1

Pointer to the query ID of

the second nearest

neighbour

n3 INTEGER 0-2^31-1
Pointer to the query ID of

the third nearest neighbour

nk INTEGER 0-2^31-1
Pointer to the query ID of

the kth nearest neighbour

lastExecution

DurationSeconds
INTEGER 0-2^31-1

Duration of the last query

execution in seconds,

rounded

Algorithm 7.13: The asynchronous query weight adjustment process

runs periodically while table queue stack exists

begin loop

if rows exist in table queuestack:

--fetch all queries from queue stack table into list 'queuestack'

--fetch current value of K as variable 'k'

--for each query in queue stack:

----fetch last execution time of query as 'lastExecutionTime'

----for n in range 1 to k:

------fetch query ID, last execution time for query n from query cache table

------if last execution time of n < lastExecutionTime:

--------set queryWeighting for query n in query cache table, decrement by 0.1

------if last execution time of n > lastExecutionTime:

--------set queryWeighting for query n in query cache table, increment by 0.1

------else do nothing

--pop query from queuestack

--goto loop start

- 109 -

A process could be introduced to adjust the constant K, which was initially set to 3. Looking for

the top K queries that are most similar to the query (the nearest neighbours), a similarity value

could be picked as the boundary condition, checking the neighbours inside the boundary and

obtaining a majority verdict. However, it leaves no reason why K should change – K is irrelevant

in this scenario, it is the query weightings that are the dynamic factor here, since each query

weighting directly affects its similarity score’s proximity to the test query. For this reason, K is set

to start as fixed to some low odd-numbered constant such as 3, and the top K queries sorted by

similarity score (descending order) are skimmed. The query weights are adjusted per execution,

asynchronously. This fits in with the classical definition of KNN.

A routine is then defined that updates K like so – K gets bigger if the similarity scores returned by

the queries tend to be high (i.e., 90th percentile). K is adjusted to reduce if the scores are low.

This is on the basis that high similarity scores are most likely to return an accurate prediction of

which schema to use, so the more of them taken into account, the more accurate and useful this

process will be. Vice versa, if the scores are low, then if K is large then the potential for error in

schema selection also increases. This is done asynchronously i.e., periodically regardless of how

many queries are being processed.

Algorithm 7.14 illustrates the K-adjustment process. It is assumed K can be looked up from the

data layer, for example as a constant in a control table.

Algorithm 7.14: Adjusting the value of K

define low threshold LT as a typed real number

define mid threshold MT as a typed real number

define high threshold HT as a typed real number

define lowK as a typed real number

define midK as a typed real number

define highK as a typed real number

assuming existence of K in e.g. table 'kvalue'...

set LT = 0.6

set MT = 0.7

set HT = 0.8

set lowK = 3

set midK = 5

set highK = 7

fetch mean of similarity scores currently in cache

if mean >= LT and mean < MT:

--set K = lowK

if mean >= MT and mean < HT:

--set K = midK

if mean >= HT:

--set K = highK

- 110 -

Finally, a process is required to map the query in hand (queryA) to the schema ID chosen by the

process. Several factors are relied upon here; first, that the similarity scoring algorithm will tend to

choose schema recommendation queries similar to the query in hand and as such, the chosen sub-

schemas will contain all the tables, columns and rows required to service the query. If this is not

the case, then the base schema is chosen as default and the query executed as normal. Secondly,

mapping is highly dependent on the schemas output by the dynamic schema mapping process (see

Chapter 8). In the practical implementation, four sub-schemas are derived from a base schema by

a simple 2-way sharding and partitioning algorithm to effectively quarter the data and it was found

a large majority of queries were mapped correctly. This behaviour is expected to be exhibited in a

real-world environment.

However, in Chapter 8 a more advanced query mapper component was presented where new

schemas are generated according to query execution history, queries are mapped to the new schema

versions and restructured to be syntactically valid, and where additional execution metadata is

collected to create and destroy sub-schemas asynchronously such that there exist a constantly

mutating set of sub-schemas from which the query selection mechanism can choose. For this

reason, the presentation of the query mapper is deferred to the next chapter. In a full

implementation, the appropriate mapped query can be chosen from the generated mapped query

from the dynamic schema process or generated on-the-fly using the same methodology.

This concludes the algorithmic implementation of this process. Please refer to the flowchart in Fig.

6 for an overview of how all the components interact together. Section 7.3 presents the practical

implementation of these components.

7.3 Practical Implementation

The code is first presented to calculate a similarity score from two input cubes. This is written in

Python and corresponds to Algorithm 7.7. Sample wrapper code is also provided, demonstrating

how to call each function in turn to move from SQL query, to edge list, to adjacency cube, and

finally to similarity score given a second query.

The code listings are extensive and so are provided in Appendix D.

Next, an implementation of Algorithm 7.10 is presented, the process that loops through the query

cache and calculates similarity scores for each pair of queryA and the member of the cache table at

hand. This is a Python implementation using PostgreSQL as the data persistence layer, and is

shown in Appendix D, Code Listing 2.

- 111 -

Next, similar queries are found for a given queryA and a set of similarity scores output by

Appendix D, Code Listing 2, finding the most appropriate schema to run queryA against by

majority verdict, execute the query and output the metadata to the query stack table and query

cache table. This is done using Python and PostgreSQL for the data layer and the implementation

is given in Appendix D, Code Listing 3, which maps to Algorithm 7.11.

Appendix D, Code Listing 4 shows the query cache, K-table and query stack table CREATE

TABLE definitions in PostgreSQL.

Finally, the Python code for adjusting query weightings in the query cache table, reflecting

Algorithm 7.13, is presented in Appendix D, Code Listing 5, written in Python for PostgreSQL.

In the next section, the test data set is described, together with the process of setting up the query

tables, creating sample queries, creating sample sub-schemas, mapping the queries, setting weights,

and configuring the environment. A working implementation for most of the design is presented,

with some minor deviations and exceptions, and the experiments and outcomes are shown.

7.4 Experimental Design

PostgreSQL on Debian was chosen as the experimental framework, as the Debian platform offers

side-by-side Python functionality (which is also installed) and the stack is entirely open-source

which removes proprietary barriers and licensing concerns. The test environment is a Microsoft

Azure virtual machine, size A0, with 0.75 cores allocation and 1GB RAM. This is a modest

machine size chosen to highlight whether this process can be viable without excessive use of system

resources.

The data set identified for testing is the same data set used for schema classification - the Chicago

crime set, available for free in its raw form [1]. This data set was chosen as it has three principal

advantages:

• It comprises of a sizeable amount of data which is more likely to take measurable time to

execute against, increasing the accuracy of any test results

• It is a simple structure but can be split out to separate tables with relative ease

• It is interesting and current (updated daily)

The following link from the website allows for direct download of the data from the Public Safety

dataset [1] via wget: https://data.cityofchicago.org/api/views/ijzp-

q8t2/rows.csv?accessType=DOWNLOAD

This was downloaded and saved as /home/../chicago/chicagoRaw.csv.

https://data.cityofchicago.org/api/views/ijzp-q8t2/rows.csv?accessType=DOWNLOAD
https://data.cityofchicago.org/api/views/ijzp-q8t2/rows.csv?accessType=DOWNLOAD

- 112 -

The Chicago data is a single table split into 22 columns. There are (at the time of writing)

~6,490,000 rows of data. The file is ~1.42GB in size. The columns are described in Table 7.15:

Table 7.15: Description of the Chicago Public Safety data set

Column

Name

Description Type

ID Unique identifier for the record. Number

Case Number The Chicago Police Department RD Number (Records Division

Number), which is unique to the incident.

Plain Text

Date Date when the incident occurred. this is sometimes a best

estimate.

Date & Time

Block The partially redacted address where the incident occurred,

placing it on the same block as the actual address.

Plain Text

IUCR The Illinois Uniform Crime Reporting code. This is directly

linked to the Primary Type and Description. See the list of

IUCR codes athttps://data.cityofchicago.org/d/c7ck-438e.

Plain Text

Primary Type The primary description of the IUCR code. Plain Text

Description The secondary description of the IUCR code, a subcategory of

the primary description.

Plain Text

Location

Description

Description of the location where the incident occurred. Plain Text

Arrest Indicates whether an arrest was made. Checkbox

Domestic Indicates whether the incident was domestic-related as defined

by the Illinois Domestic Violence Act.

Checkbox

Beat Indicates the beat where the incident occurred. A beat is the

smallest police geographic

areahttps://data.cityofchicago.org/d/aerh-rz74–each beat has a

dedicated police beat car. Three to five beats make up a police

sector, and three sectors make up a police district. The Chicago

Police Department has 22 police districts. See the beats at

https://data.cityofchicago.org/d/aerh-rz74.

Plain Text

District Indicates the police district where the incident occurred. See the

districts athttps://data.cityofchicago.org/d/fthy-xz3r.

Plain Text

Ward The wardhttps://data.cityofchicago.org/d/sp34-6z76(City

Council district) where the incident occurred. See the wards

athttps://data.cityofchicago.org/d/sp34-6z76.

Number

Community

Area

Indicates the community area where the incident occurred.

Chicago has 77 community areas. See the community areas

athttps://data.cityofchicago.org/d/cauq-8yn6.

Plain Text

FBI Code Indicates the crime classification as outlined in the FBI's

National Incident-Based Reporting

Systemhttp://gis.chicagopolice.org/clearmap_crime_sums/crime

_types.html(NIBRS). See the Chicago Police Department listing

of these classifications at

http://gis.chicagopolice.org/clearmap_crime_sums/crime_types

.html.

Plain Text

https://data.cityofchicago.org/d/aerh-rz74
http://gis.chicagopolice.org/clearmap_crime_sums/crime_types.html
http://gis.chicagopolice.org/clearmap_crime_sums/crime_types.html

- 113 -

X Coordinate The x coordinate of the location where the incident occurred in

State Plane Illinois East NAD 1983 projection. This location is

shifted from the actual location for partial redaction but falls on

the same block.

Number

Y Coordinate The y coordinate of the location where the incident occurred in

State Plane Illinois East NAD 1983 projection. This location is

shifted from the actual location for partial redaction but falls on

the same block.

Number

Year Year the incident occurred. Number

Updated On Date and time the record was last updated. Date & Time

Latitude The latitude of the location where the incident occurred. This

location is shifted from the actual location for partial redaction

but falls on the same block.

Number

Longitude The longitude of the location where the incident occurred. This

location is shifted from the actual location for partial redaction

but falls on the same block.

Number

Location The location where the incident occurred in a format that allows

for creation of maps and other geographic operations on this

data portal. This location is shifted from the actual location for

partial redaction but falls on the same block.

Location

(Table adapted from ‘Columns in this dataset’ [1])

First, a recipient table is created to stage the data from the CSV file. The columns have been

slightly renamed to remove whitespace and avoid reserved words, and appropriate datatypes have

been chosen where possible:

CREATE TABLE chicagobase (

 rid INTEGER,

 rcaseNumber VARCHAR,

 rDate TIMESTAMP,

 rBlock VARCHAR,

 rIUCR VARCHAR,

 rPrimaryType VARCHAR,

 rDescription VARCHAR,

 rLocationDescription VARCHAR,

 rArrest BOOLEAN,

 rDomestic BOOLEAN,

 rBeat VARCHAR,

 rDistrict VARCHAR,

 rWard INTEGER,

 rCommunityArea VARCHAR,

 rFBICode VARCHAR,

 rxCoordinate INTEGER,

 ryCoordinate INTEGER,

 rYear SMALLINT,

 rUpdatedOn TIMESTAMP,

 rLatitude DOUBLE PRECISION,

 rLongitude DOUBLE PRECISION,

 rLocation VARCHAR);

- 114 -

The data was loaded into the table using the \copy command in the psql client like so:

 \copy chicagobase FROM '/home/del/chicago/chicagoRaw.csv'

 WITH (FORMAT csv, DELIMITER ',', HEADER);

A base schema was created consisting of one table, chicagobase. Another schema is then created

which splits the data horizontally (partitioning) and vertically (sharding) to create 4 tables as

shown in Fig. 7.16, with the verticals linked on rID as primary key.

The partition tables will be called 'Alpha' and 'Beta' accordingly - Alpha before the midpoint of

rDate, and Beta after. The shards will be called CrimeType and CrimeLocation. For example, the

fourth table in Fig. 7.16 below is called 'CrimeLocationBeta':

Fig. 7.16: Chicago data split into sub-schemas

- 115 -

There are benefits to choosing this split:

• Queries which draw from only a selection of columns within a particular shard need use

only the respective shard and not the full base schema

• Queries which draw only a limited set of row data may be able to use a particular

partition rather than full scans of the base schema

• Crime type data (e.g. description, case number) is contextually separated from location

data, which should result in better performance for queries which only need one or the

other.

The statements to create and load these tables from the base schema in PostgreSQL are shown in

Appendix D, Code Listing 6.

If a count is now issued of the populations of the tables, the data is shown to have been split

between the two partitions alpha and beta (row count), and the two partitions, CrimeType and

CrimeLocation (columns are split), making four tables in total. Fig. 7.17 shows the counts.

SELECT 'chicagoCrimeTypeAlpha', COUNT(*) FROM chicagoCrimeTypeAlpha

UNION ALL

SELECT 'chicagoCrimeTypeBeta', COUNT(*) FROM chicagoCrimeTypeBeta

UNION ALL

SELECT 'chicagoCrimeLocationAlpha', COUNT(*) FROM chicagoCrimeLocationAlpha

UNION ALL

SELECT 'chicagoCrimeLocationBeta', COUNT(*) FROM chicagoCrimeLocationBeta;

SELECT COUNT(*) FROM chicagoBase;

Fig. 7.17: Table cardinalities in the Chicago sub-schemas

- 116 -

K-nearest neighbour is an interval-based machine learning classifier. These types of classifiers can

be used in unsupervised learning; however, the approach used here is a slight modification - it is a

selection of neighbours using KNN, but a majority verdict of the classification decision to make

based on the classification decisions of those selected neighbours. Therefore, a set of labelled

training data already in the cache is required - the more queries, the better; also, the weights need

to be pre-set, and likewise the value of K.

For any query, there are two schemas to choose from - the single-table schema and the four-table

schema. For testing purposes, some queries are required (to be written or generated) on one of

these schemas. These are written on the single-table schema first before deriving the 4-table

equivalents, since this will allow an opportunity to fully test the similarity algorithm in both

directions.

These queries are then labelled by hand with what are believed to be the most appropriate schema

for it; then this information is recorded into the cache. This produces a set of training data.

It was necessary to write a random query generator specifically for this data set. This query

generator was mentioned in an earlier chapter, and outputs from it were used to test the query

representation algorithms. This is presented in full in Appendix D, Code Listing 7. SQL Server

was used, as PostgreSQL did not have query variable support, and it was necessary to construct

SQL dynamically and with complex methods such as side-effecting random variables.

This query generator is used for test purposes and does not form part of the novel contribution to

knowledge, so the algorithm is not presented here; in brief, it generates random values to fit a

variety of domains and data types for a series of columns passed into it from the Chicago base

tables.

Next, for the purposes of testing, a new stored procedure was created which would generate the

equivalent query against the alternative schema (the version with 4 tables). To do this, a

determination of whether columns in the query belonged to crimeType, crimeLocation or both was

made; and it was determined, in the case where rDate was a predicate, whether the date indicated

fell before, or after, the median (so as to determine whether to use the alpha partition or beta

partition). If rDate isn’t a predicate then a UNION ALL is necessary.

Again, using SQL Server, this mapping was possible programmatically as shown in Appendix D,

Code Listing 8. A table-valued function (a function that returns a result set, also known as a

TVF) was created that takes a single statement as input, creates the alternative schema, and

returns both the original and new statements as output.

- 117 -

This function is used in a CROSS APPLY to generate as many queries as necessary; the example in

Appendix D, Code Listing 9, written in T-SQL, uses the function above to generate 1,000 queries.

Fig. 7.18 illustrates the output.

Fig. 7.18: Output from the random SQL query generator

From here, the training data requires importing into the QueryCache table along with some other

information – query weightings, which are all initially set the same; and NULL for query execution

time. A decision is needed for each query on which schema would be most appropriate for the

query, which was done automatically according to the following heuristics.

Rule 1

IF query uses BOTH partitions (alpha and beta)

AND query uses BOTH shards (type and location):

 Use base schema

(on the basis that no savings will be made using the 4-table schema so the base schema will

be quicker)

Rule 2

IF query uses BOTH partitions (alpha and beta)

AND (query uses type shard XOR query uses location shard):

 Use base schema

(on the basis that the UNION ALL is redundant and so the base schema will be quicker)

Rule 3

IF query uses the alpha partition XOR query uses the beta partition

AND query uses BOTH shards (type and location):

 Use 4-table schema

(on the basis that the row count is divided in 2 so the seek time should be lower across the

rows)

Rule 4

IF query uses the alpha partition XOR query uses the beta partition

AND query uses the type shard XOR query uses the location shard:

 Use 4-table schema

(on the basis that the 4-table schema presents the smallest possible set so should be quicker)

- 118 -

First, the data was imported, leaving aside lastQueryExecutionTime and AssignedSchemaID,

setting all weights to 1, to the QueryCache table in PostgreSQL:

INSERT INTO querycache

 SELECT t.rid, t.stmt, 1.0, NULL, t.alt, NULL

 FROM public.trainingdataraw AS t

 ORDER BY t.rid;

Finally, a cursor was created which would loop through all the query pairs now in QueryCache.

For each query pair, the cursor would a) select a schema using the rules above and b) execute the

requisite query (for the schema) and finally record the query execution time in

LastQueryExecutionTime. In this way, the QueryCache table was populated and the training data

is ready to use.

The test data is stored in the TestDataRaw table for use during the testing, documented in the

next section.

7.5 Testing and Results

Several subprocesses have been defined that form the similarity scorer and schema mapper. In this

section, the tests are specified and the results are shown for various units within the process and for

the process in the main.

Firstly, the similarity scoring mechanism is tested with 5 pairs of queries, to get an indication on

whether this process is viable. The queries are listed in Appendix D, Code Listing 10, in a test

harness written in Python against the similarity function.

These queries were chosen (also in column 2, Table 7.20) to illustrate a range of similarities. The

first query pair are structurally and functionally identical; the final query pair are structurally

similar but the objects are completely dissimilar and so should not generate a high similarity score.

The results are shown in Table 7.19.

A low deviation in the results from the expected scores (the hypotheses) is noted, indicating

optimism that the algorithm is returning results in an expected range.

- 119 -

Table 7.19: Results from similarity scoring process testing

Some limitations were noted with the implementation, particularly:

• No support for nested queries e.g. subqueries or CTEs

• Limitation on complex JOIN and WHERE conditions

• WHERE clauses limited to AND or OR (no support for constructs like BETWEEN or

IN)

The suitability of the solution for the full range of allowable ANSI-SQL is discussed in the

conclusions.

Next, the query generator function was tested against 10 sets of 1,000 queries (which were

generated using the random query generator function), with the aim to discover how many, if any,

alternative mapped queries failed to be generated by this process; or, the failure rate. Table 7.20

shows the results.

- 120 -

Table 7.20: Failed query mappings

With each run consisting of 1,000 queries, the average failures were 46.8 queries per 1,000 queries; a

failure rate of 4.7%. This is an optimistic result, as the converse view is that 95.3% of queries were

mapped successfully. More work is required on the implementation to converge this percentage to

100%.

Next, it was observed if the queries generated and their alternatives all executed correctly, i.e. they

are syntactically and functionally valid. To do this 4-table schema was recreated in Microsoft SQL

Server (empty of data), then a cursor was used to iterate over each query pair, executing each in

turn. If both executed without erroring, the query pair was marked as valid.

The SQL code to do this is shown in Appendix D, Code Listing 11.

It was here that some severe issues with the method were noticed. The ‘good’ queries numbered

only 163 of 1000 (16.3%), a failure rate of 83.7%. There were periodic system crashes as the system

struggled to cope with executing 1,000 queries and rendering the result sets. It was determined

that the problem was that some columns SELECTed in the alternative query didn’t exist in the

shards of the table selected (i.e. ‘rYear’ exists in the type shard, not the location shard so a query

against the location shard that specifies this column would fail).

After some consideration, it was realised there were several problems – the first problem lay in the

shard flag settings of my query generator – rYear was missing. The following line was added:

OR @inboundQuery LIKE ('%rYear%')

The second problem was the LocationDescription column was missing from the

LocationAlpha/Beta tables. This was added in a similar manner.

- 121 -

The third problem was that code after the UNION ALL was JOINing between the LocationBeta

and LocationBeta tables instead of the TypeBeta and LocationBeta tables, a result of a simple

typographical error. This section was amended to:

REPLACE(@outboundQuery, 'chicagoCrimeTypeBeta a

INNER JOIN chicagoCrimeLocationBeta b ON a.rid = b.rid',

'chicagoCrimeTypeBeta a

INNER JOIN chicagoCrimeLocationBeta b ON a.rid = b.rid')

The fourth problem was that the ‘rid’ column was ambiguous when included in the SELECT, since

aliases are not being used. The code was amended so all FROMs were aliased, and a section was

added to explicitly replace rid and rDate SELECTs with the same plus appropriate aliases. This is

not an elegant solution but given this code doesn’t form a core part of the solution (only the test

harness) the workaround does not undermine the design.

The fifth problem was the second half of queries containing UNION ALL was identical in some

circumstances to the first half of the query. This was traced back to two mis-specified @variables,

and fixed this issue.

The sixth problem was that some queries were generated that broke data typing rules i.e. with

WHERE predicates like this - … WHERE rid = ‘some string’ when rid is an INT. This was due to

the omission of a line dealing with the INT datatype in the QueryGenerator procedure, which was

subsequently added.

The seventh problem was the occasional appearance of the single quote ‘ in literals used in the

WHERE clause. Adding a REPLACE clause to replace in-data instances of single quotes fixed this

issue.

 The test query count to was lowered 100 to counteract the system resources problem, batching it

to run 10x times to get the 1,000 queries desired per run.

Retesting with these fixes, this yielded a failure rate of nil; or 100% ‘good’ queries, discounting

NULL-valued alternatives.

These were exported to PostgreSQL in the test instance. 954 queries were exported by way of a

training set, and another 955 for testing purposes, overcoming the crashing issue when generating

queries by executing at the command line. Export to flat file was done via the Import and Export

utility in SSMS (SQL Server) from the dbo.TrainingData and dbo.TestData tables (where the

output was stored from the above). The data was then imported using the tools provided by

DataGrip (the PostgreSQL IDE in use) directly from the flat files.

- 122 -

Next, with the training and test data sets in PostgreSQL, the test outcomes from running the

process end-to-end are presented; both the synchronous element (real-time query processing using

adjacency cube generator, similarity scoring, schema selection and query mapping), and the

asynchronous element (updating query metadata including weightings and execution times).

These tests were conducted using the scientific method. Table 7.21 describes the battery of end-to-

end tests.

Tests 1, 2 and 3: 10 new SQL queries were generated and the matrix parser implementation was

ran against them using the whole metadata cache, running the process at the individual level,

whole-query level and whole-batch level to ascertain timings, which amounted to 9,520 executions

of the algorithm. The processing time was found to be highly variable, with a mean average of

54ms per Q/Qx comparison and a standard deviation from the mean of 25ms. Error handling was

introduced in the test harness but errors at this stage were nil. The range of the durations varied

between 278ns and 158ms. These results are shown individually and grouped by query in the

diagrams in Figs. 7.22(a) and 7.22(b). The variance between queries is clearly visible by the

column height differences shown in Fig. 7.22(a) and the differences in the mean markers in Fig.

7.22(b).

Test 4: This was to ascertain whether queries running under PETAS executed faster on average

than queries using only the normal execution process. This test was scoped – the aim was to

measure whether using schema selection resulted in overall faster execution, rather than testing the

end-to-end process. Tests 1-3 highlighted an issue in the implementation of the classifier – queries

were taking, on average, 54ms to be compared against each neighbour, the delay mostly due to

iteration when parsing the query into the matrix. This scaled up to a significant and unviable

delay per query execution. It is envisioned that further development of this functionality could

result in significant improvements, for example by storing matrices in the metadata rather than

enforcing recalculation; limitation to some n sample of potential neighbours rather than the full set;

rework of the algorithm implementation to use parallel threads; and looking into more efficient

mathematical models for matrix calculations.

- 123 -

Table 7.21: Test descriptions

- 124 -

Fig. 7.22(a) and 7.22(b): Processing time (ms) per query and per run (batch)

- 0 -

However due to this 54ms delay, it was necessary to exclude from scope this overhead for test 4.

The number of Q/Qx comparisons were also limited to 50, selected randomly from the cache.

Doing so meant that a) it was less likely that an improvement in query classifier accuracy would be

recorded because the K-nearest neighbours in a sample of 50 would be less accurate (have lower

scores) for Q/Qx than the K-nearest neighbours in the full query set; and b) any multiple increase

in individual query weights would be dependent on the query being sampled more than once. By

sampling 50 from approximately 950 queries, the probability of selection is approximately 0.052

rather than 1, therefore dampening any classifier improvement as a result.

Using the pool of 952 test queries Q against 50 Qx queries drawn randomly (47,600 comparisons), it

was found that 47.9% of queries were classified to the alternative schema and the remainder to the

base schema. In order to ensure test validity, the timings for all queries were re-ran against the

base schema only and an unexplained deviance was noticed in the average query execution time of

+9.9%, consequently labelled D and corrected for in the analyses. The deviance is attributed to

unrelated background operating system activity stemming from the use of cloud, rather than fixed,

computing resources.

The results of running these queries were a mean reduction in query execution time of 6.2% for all

queries regardless of schema assignation, and a reduction in query execution time of 20.6% for

queries executed against the alternative schema. Fig. 7.23 shows these cost savings for all queries.

The upper trendline indicates the mean original query execution time (with D correction) and the

lower trendline indicates the mean query execution time with schema selection.

Fig. 7.23: Cost savings (execution time in ms) per query, per schema

- 1 -

Test 5: This test was to check the error count of the test queries from test 4. Ideally there would

be no errors in execution. There were 8 queries of 952 found to be errored due to syntactic issues, a

rate of 0.84%. This reflects a limitation in the proof of concept, since as previously discussed, a full

PETAS implementation would not rely on syntactic mapping but would map at the parse tree or

other lower level.

Test 6: This test aimed to examine whether query weights in the metadata cache were being

adjusted as part of the end-to-end PETAS process. Some implementation issues were found which

caused queries to be deleted from the cache before their weights were adjusted and these errors

were corrected. All weights were set to 1. KNN was calculated by multiplication of S by W for

each Q/Qx tuple. Where a weight was adjusted, it was incremented or decremented by 0.1 for all

current Qx in K. The metadata cache was kept at its previous population of 952 and generated 100

new test queries. 86 were syntactically valid, where 14 failed validation (due to weak

implementation of the query mapper). The 86 were ran through the PETAS process. It was found

that in 30 cases, members of the cache (Qx) were being incremented or decremented, of which 4

cache members’ weights were adjusted more than once, and the range of Wx varied between 0.8 and

1.2. Increments and decrements were evenly split.

This result is important because the feedback mechanism of the classifier relies on the query

weights being adjusted, either positively or negatively. Without this feedback, PETAS would be

static and would not continually learn from new input. With 86 test queries (Q) and K = 3, it was

expected that a maximum of 252 queries in the cache (the pool of Qx) would have their weights

adjusted. That this adjustment happened, and that a proportion of the queries in the metadata

cache (30 different Qx were affected) means that the KNN mechanism is working – queries (Qx) are

being selected from the cache corresponding to the structural similarity to inbound queries (Q) and

furthermore, are being selected multiple times, as evidenced by the ratio of 30 to the maximum 252.

Test 7 discusses how the similarity scores are affected when the same queries are being selected

from the cache.

Test 7: This final test aimed to establish whether the KNN classifier was improving its own

accuracy through weight adjustment. Such an improvement would manifest in mean average

similarity scores from the matrix parser for successive Q/Qx combinations increasing over query

iterations, as the ‘useful’ queries’ chances of selection were probabilistically increased by weighting.

The same 86 queries Q were used as selected in Test 6, and K was set to 3, obtaining 3 similarity

scores S1, S2 and S3 for pairs Q/Q1, Q/Q2 and Q/Q3 for each Q (a total of 258 similarity scores).

All Sx outcomes ranged between 0.68 and 0.9.

A modest positive correlation was found between successive query iterations and S. Using the

slope-intercept method, the function of this correlation can be calculated as y = 0.00035294x + 0.74

- 2 -

(see the trend line in Fig. 7.24(b)). As an aside, using this linear formula as an approximation, it is

possible to predict the number of queries required to be processed to achieve a specific S average

(for y values < 1): e.g. for S = 0.98, this formula yields an estimate of 680 queries. Further testing

would be required to establish the limits of this process.

Figs. 7.24(a) and 7.24(b): Query weight distribution, and query iteration

correlation to similarity, respectively.

This concludes the testing and results. In the next section, the conclusions from the tests are

briefly summarised and their impact on the viability of the solution design is discussed.

Conclusions are discussed more broadly in the final chapter.

7.6 Conclusions

The testing carried out demonstrates the functionality of the matrix parser and KNN classifier,

which worked as designed and demonstrated that query performance can be improved by matching

queries to the most appropriate schema in an approach using multiple logical data representations.

Limitations were observed; the implementation and testing did not support the full ANSI standard,

and the existence of an unacceptable overhead during execution was evident. It is believed that

these issues can be overcome by implementation improvements, for example by pre-calculating

adjacency cubes and storing these in the metadata cache, and by replacing loop-based syntactic

parsing methods. PETAS was demonstrated to work from the query parser through to the

adjacency cube generation (Chapter 6), then through the similarity scoring mechanism, schema

selector and query mapper (Chapter 7), resulting in a significant improvement of query execution

times exceeding 20% (for over 50% of a test population) through the presentation of a choice of

schemas and the activities of the new machine learning-led classifier. It was also demonstrated that

PETAS learns from experience, with the constant adjustments of weights leading to more accurate

- 3 -

query classifications and a general increase in similarity scoring, although correlations of the latter

were weak.

7.7 Chapter Summary

In this chapter, the work on the transformation process from SQL query to adjacency cube in

Chapter 6 was extended, and it was shown how the new ML-driven functions can be used to

calculate relative similarity between two queries, or cubes, how to use this similarity measure in a

KNN implementation to find the most similar queries from a cache to a given query, and how to

select the most appropriate schema by majority verdict. The process to dynamically adjust K was

demonstrated and how query weighting can be used to give precedence to those queries which yield

schema selections that most often result in decreased execution times, resulting in a self-learning

methodology. The implementation of the same components was presented, built using Python on

Debian, PostgreSQL, and Microsoft SQL Server. Limitations on the implementable features were

noted, including lack of support for the full SQL standard, and the investigation showed how the

results reflected potential performance improvements but only to a limited subset of all queries, and

with a performance overhead manifesting as increased execution time that requires tuning out via

an improved implementation.

Chapter 8 presents a dynamic schema definition process which monitors inbound queries to the

database engine, uses the metadata in the query cache to create sub-schemas based on demand, de-

allocates and destroys underused sub-schemas, and presents an alternative query mapper

implementation. This component can be used alongside the work presented in this chapter to

provide various alternative sub-schemas in an asynchronous fashion, meaning manual setup of sub-

schemas as demonstrated has the potential to be fully automated. In this way, all components of

PETAS become fully automatable, improving the viability of this solution for further development

into industry-standard RDBMS tooling.

- 4 -

Chapter 8 – Testing: Dynamic Schema Redefinition

Please note that this chapter is a revised version of the research published in Colley and

Asaduzzaman, 2020 [1]. Omitted code listings are provided in Appendix E.

8.1 Introduction

As the Zermelo-Fraenkel set-theoretic axioms as applied to Codd’s relational model allow for the

expression of subsets from base sets using the axiomatic schema of separation [2], the axiom schema

of separation can be extended into the relational database space by specifying and prototyping a

new cross-platform technique using materialised views (MVs) for rapid, real-time schema derivation

to reduce the query space and improve the query cost and resource use of database queries for a

faster, more efficient transactional throughput.

From the research and solution design, it is concluded that MVs may present a potentially viable

solution to describing, persisting and using subset data sets as alternative derivations from the base

schemata and used in conjunction with the query cache as an asynchronous process, provide the

opportunity for dynamic, real-time schema derivation for better query performance.

8.2 Algorithmic Implementation

A high-level overview of the key components of the algorithms comprising the dynamic schema

redefinition element of PETAS and their interfaces with the existing RDBMS query processor are

illustrated in Fig. 8.1 (new components are in the dashed area).

Three new processes are introduced to implement dynamic schema redefinition, dependent upon

two new global temporary tables. The query parser fetches queries from the plan cache and

divides their syntax into attributes, data sources and predicates (SELECT, FROM and WHERE

subclauses). The create and destroy M Vs module analyses the collected queries, determines

which are suitable for conversion to use materialised views, applies any secondary parsing (for

example when converting parameterised/prepared queries), prepares and executes the DDL queries

to create the materialised views, maps the parsed queries to their originals and to the MV, and

drops any unused or invalid MVs. The analyse query/M V use metadata module analyses the

resultant mapped queries, analyses system metadata from the system views and plan cache,

executes mapped queries, computes efficiency and efficiency ratios between the original and the

mapped queries. The temporary tables reflect some of the data from the plan cache and store all

the information needed by the described processes to operate.

- 5 -

Fig. 8.1: High-level overview of the dynamic schema redefinition process

The data flow diagram in Fig. 8.2 illustrates the flow of data to, from and through the new

components. This diagram uses Yourdon-DeMarco notation [3]:

Fig. 8.2: DFD illustrating data flow in the dynamic schema solution

- 6 -

The query parser component is responsible for fetching and parsing queries from the RDBMS

plan cache. The query is first tokenised, the existence of the relationships is mapped between the

components of the query then each component is classified as either a data source (relational part),

attribute (and the associated relational part) or predicate (clause on the WHERE or JOIN

components). The use of these query items is then recorded by way of inserting new records to the

query components temporary table or matching on existing components within the table and

updating the frequency of the components’ occurrence.

The algorithm for the query parser is shown in Appendix E, section E.1.

The create/destroy M Vs component is responsible for a) identifying, through frequency analysis,

the relational parts, attributes and predicates most commonly called and for constructing and

implementing appropriate materialised views in the database; b) identifying those materialised

views that are no longer required most frequently by inbound queries and destroying them.

Improvements can be made in future by replacing or augmenting frequency analysis with total read

count from parsing of the execution plan:

The algorithm for the create/destroy MVs component is shown in Appendix E, section E.3.

The analyse query/use M V metadata component is responsible for using the materialised view

definitions created by the ‘Create and destroy MVs’ component to model queries from the plan

cache, using appropriate system metadata, and to record the relative costs associated with running

these queries against MVs versus the base schemata. The information output is stored within the

temporary tables for use when creating/destroying MVs and for analysis. In a full implementation

(where the query processor is exposed for re-engineering), this component would also be responsible

for flagging the query to the query processor as suitable for running against the MV(s) and forcing

it as an alternative rather than the base schemata.

The algorithm for the analyse query/use MV metadata component is shown in Appendix E,

section E.4.

The temporary tables component is a set of tables held within the temporary

tablespace/database of the RDBMS which enable the main processes of the schema redefinition

process to read and write query, MV and performance data. These are recreated on system start-

up/restart. As a static object, there is no associated algorithm; the entity-relationship diagram in

Fig. 8.3 illustrates the structure of and relationships between the tables used for query analysis and

the RDBMS-provided plan cache and supplementary table-valued functions. Crow’s-Foot notation

[4] is used and for the plan cache, it is assumed the structure provided for in the relevant Microsoft

SQL Server 2017 plan cache table [5].

- 7 -

The ##cs table, which is a reflection of sys.dm_exec_query_plan and derivation of the

sys.dm_exec_query_text TVF, is not shown.

Fig. 8.3: ERD for tables involved in dynamic schema redefinition

8.3 Practical Implementation

To test this solution, the TPC-C benchmark data set [6] with the TPC-affiliated HammerDB open-

source tooling [7] was chosen and Microsoft SQL Server 2017 Developer Edition was used as the

RDBMS.

The process begins with zero materialised views and clearance of the plan cache. The algorithms

from Appendix E, implemented in T-SQL, are then employed – these algorithms monitor the SQL

Server plan cache, analyse query contents and periodically maintain a rank-order summary of

appropriate subsets of the schema within global temporary table objects. The SQL Agent job

- 8 -

engine is used to operate this process. At set periods, each subset is constructed and implemented

asynchronously as a materialised view, and views which are no longer highly ranked are dropped.

The HammerDB query simulation engine is not used out-of-the-box, since this runs just 5 different

stored procedures with various parameters; suitable for performance testing, but unsuitable for

analysing the impact of the algorithm due to a) the lack of variety in queries and b) the limitations

of extracting statement-level queries from the plan cache, where procedures are aggregated as

executions at the procedural level rather than at the statement level. Instead, a data bank of 9,660

different SELECT queries is used, generated from the TPC-C dataset by randomly selecting

attributes from tables with and without different kinds of JOINs and using a datatype-appropriate

random generation of predicates. These queries are stored in a separate database and separately

executed using a Python script which allows the selection of a random query, the execution of the

query and the control of the rate of execution using an artificial delay. All queries are unique with

an estimated 4.48 x 1015 possible permutations across the schema (using formula nPr = n! / (n –

r)!, assuming 94 columns and a mean average of 8 selections) ensuring the probability of exact

query duplication from the process p = 10,000 / 4.48 x 1015 = 2.28 x 10-12 . Multiple processes can

be spawned to simulate parallel users if necessary.

Query parser: This yields table ##q populated with current and historical queries, parsed into

SELECT, FROM and WHERE segments at the top hierarchical level.

Create and destroy M Vs: This process was tested and execution was found to be consistently

10s ± 5s (excluding the creation of indexes), with success rates in identifying and parsing queries,

creating and testing MVs and linking queries to MVs with a typically c.68% success rate overall,

+/- 10%.

Analyse M Vs / use metadata: This module is responsible for analysing the created MVs,

extracting the query metadata from the plan cache. This is done by extracting the query execution

plans from the cache, parsing these plans by exploding the XML and extracting the key statistics,

before updating the ##q_mv_link table with the query statistics. This module also runs the new

query versions generated against the MVs and extracting the new costs from the cache, updating

the temporary table, to allow comparison of old and new query performance statistics on a per-MV

basis. Finally, this module calculates the query cost and efficiency differences (the new definition of

efficiency is used with the assumption that the appropriate ‘rows read’ parameter in the execution

plan is accurate).

- 9 -

Temporary Tables: The temporary tables are of the global temporary type (prefixed ##),

resident in memory, faulting to the tempdb database, and available across all sessions/connections

in the database instance. This was chosen to maximise memory use, minimise disk use, improving

performance, and avoiding metadata permanence.

Using these new processes, the MVs can be defined but in the current experimental configuration,

redirecting the query engine to replace the base tables referenced in inbound queries with the MVs

as they run is not possible, as this functionality is currently unavailable in all RDBMS engines, a

drawback shared with other academic research in this area, although forks of open-source RDBMSs

such as PostgreSQL could theoretically be developed to support this. The proposed solution allows

for this by designating a component to perform this mapping and flagging operation. In lieu of this

active replacement of queries, the same queries are re-run (while the TPC-C test load is in

progress) that would have their references replaced against the new MVs and the number of reads

required and query execution times against the original versions are compared in order to quantify

any improvements in efficiency, drawing this information from the execution plans, which yields

comparative statistics between the original queries and new queries. This also allows the

computation and comparison of performance statistics.

8.4 Experimental Design

The implementation of the algorithms was completed in an iterative fashion and component-level

(preliminary) testing was conducted throughout, combined with end-to-end (system) testing against

the benchmark data set.

This section is structured into a set of preliminary observations (observations made on the success

or limitations of the proposed solution found during implementation); and details of the test

parameters, data and outcomes as systemic observations (observations made during end-to-end

testing of the implementation); the results when considering storage and performance trade-offs are

also presented, tangential to the main results.

After implementing solutions from the outcomes from the preliminary testing, the first successful

system test was conducted. 1,801 queries were executed in serial over a maximum period of 300

seconds (actual: c.27 seconds) randomly drawn from the preassembled query bank of 9,660 queries

that were created against the TPC-C benchmark data set. The query parser module was run,

which parsed the resulting 1,464 queries associated with plans in the plan cache in approximately 2

seconds and identified 1,462 distinct queries in the raw query table ##q suitable for consideration

for new MVs, a success rate of 99.9%.

- 10 -

The create/destroy MVs module was then executed, which identified 73 distinct non-indexed MVs

to create, linking 1,186 queries in ##q to the new MVs in ##mv, a success rate of 65.6%. From

the 73 MV definitions, 53 actual non-indexed MVs were created from the definitions in ##mv, a

success rate of 72.6%. However, non-indexed MVs are only views, and only create an overlay which

allows the query optimiser to access the base tables. For improved performance, indexed MVs are

required. This module therefore then attempts to create the unique indexes on the identified MVs.

It was found that of the 53 non-indexed MVs created, 6 were indexed successfully, taking a total of

910 seconds to complete the whole module run. The most common error encountered when

indexing the MVs was due to the presence of OUTER JOINs (see below), the second most common

was the presence of a duplicate primary key, and the third most common was the resulting row

length of the MV exceeding the platform hard limit of 8,060 bytes. Thus, the overall success rate

from inbound query to indexed MV was 11.3%. Table were created in lieu of indexes as per the

comments from the preliminary testing, which resulted in 100% of defined views having indexes or

replaced with tables.

The analyse/use metadata module was executed to fetch costs and re-run alternative queries (new

formulations of existing queries using the new MVs). This resulted in the successful analysis of 332

queries and fetching of relative costs for 171 total queries.

For these 171 queries, the following observations were made (using mean averages):

• 8 queries had increased in actual query costs.

• 33 queries had decreased in actual query costs.

• 130 queries had remained identical in actual query costs.

• The average cost increase using the new queries was 0.7622 in real terms.

• Estimated rows read increased, on average, by 1,261.

• Overall query efficiency, as per the definition (see ‘Investigating Query Efficiency’),

decreased by an average of 4.31%

Following analysis, outliers were found in the data that skewed the mean averages significantly.

For example, cost delta (difference between original query and new query costs) averaged 0.76 but

had a standard deviation of 11,005. This means that the mean averages are not representative of

the data, and so the aggregated observations were repeated using median averages, which were all

nil. Given that averaging had not proven particularly useful, outliers were excluded, and the data

was analysed between percentiles 0.05 - 0.95. The resulting data offers some evidence that queries

against MVs (or tables in their place) can, on count of affected queries alone, be beneficial to more

queries than harmful to others and on balance may indicate some limited evidence of viability. The

tests were continued by examining those queries benefiting from the new arrangements, and the

expected cost and read count/rows (efficiency) effects.

- 11 -

8.5 Testing and Results

The solution was successfully implemented and tested this using Python as the application caller

and Microsoft SQL Server 2017 as the database engine. The code is listed in Appendix E.

8.5.1 Preliminary observations

The following observations were made during implementation and testing:

• Due to the propensity of queries involving OUTER JOINs to be susceptible to missing rows

when base data is added, OUTER JOINs are not supported in indexed views in Microsoft

SQL Server [8]. A similar, but less severe, limitation exists in Oracle Database [9]. When

it was found that the overall success rate in creating unique indexes on the views was

relatively low, the views were stubbed by creating tables instead with a small code change.

Although tables are not schema-bound (meaning when the base table is updated, the tables

are updated), they provide an appropriate facsimile for MV testing. This does, however,

impact the overall solution strategy. The implications of this are discussed further in the

conclusions.

• Time taken to create indexed views (where allowed) was relatively long and in some cases

indefinite. One of the symptoms of poor performance was identified as CXPACKET-type

waits, due to the CREATE INDEX statements using parallelism inefficiently (8 logical

cores were available on the test system but one node alone was used for the I/O operations

and another to govern) and coupled with the large requirement for row reads while creating

these indexes on views with large row counts. Negligible actual disk use was observed

throughout and highly variable (c. 12.5% to 100.0%) CPU use was noted. Microsoft SQL

Server supports parallel index operations on the CREATE INDEX statement [10] but this

wasn’t working very successfully (over 300 parallel threads were observed on a single core

in the preliminary testing with most other cores idle). The lack of clustered indexes on the

TPC-C data set was noted and, in lieu of this, and to help address performance, a set of

database statistics covering each key on each table in this set were created. Unique

clustered indexes or defined primary keys to lower I/O could not be used due to the

limitations of the data (particularly, key duplication) in the TPC-C dataset supplied by

HammerDB.

- 12 -

• It was also noted that abortive runs of the process to create the indexed views (where the

process hung) occurred when a CROSS JOIN was involved. Given a CROSS JOIN outputs

the Cartesian product of two relations, the number of rows involved can be tremendous

before the WHERE filters are applied. On analysis of one occasion where the process hung,

it was noted that the CROSS JOIN of STOCK and ITEM with 5 unindexed primitive

predicate filters resulted in 10 billion rows to store in memory, pre-filtering, and

consequently 1 x 1010 rows in the destination index table, too many to store efficiently or

be of any use to subsequent queries; creating this index also resulted in 100% CPU use.

For this reason, the process was amended to exclude the consideration of queries that

contain CROSS JOINs.

• It was noted that queries with excessive numbers of predicate filters took longer to run due

to the excessive filtering required on the table/index scans which could affect scalability of

this solution especially for tables larger than 100,000 row cardinality.

• It was noted that the new process successfully deduplicated queries, deduplicated their

predicates and attributes, deduplicated and ignore repeated MV definitions and

consequently ran continuously against a consistent inbound query load.

• Some indexes could not be created due to the space required to store the output index, and

the test system used wasn’t sufficiently powerful to process queries joining the columns in

order_line (originally >1.4m rows) in a reasonable time period when a table scan was used.

This was particularly prevalent when merge-type INNER JOINs were used with parallelism

due to the requirement for merge-type JOINs to have pre-sorted input, and the

computational load this entails with very large data sets. To counter this, 50% of the

content in order_line was removed at random to reduce the order_line cardinality to

721,198, which did not affect database integrity since there are no foreign key dependencies

(hard or soft) upon this table.

• Related to the above, as queries are automatically generated, some query joins are illogical,

and effectively create CROSS JOINs. For example, the join between CUSTOMER and

HISTORY on c_w_id = h_c_w_id is illogical since the columns relate to WAREHOUSE,

and for all rows in both tables, all values are 1. With 100,000 rows on each side of the

JOIN, this amounts to a CROSS JOIN that quickly fills available disk space. This is an

artefact of the artificiality of the queries. Working around this issue by imposing a TOP

1,000,000 clause within every indexed view so there exists consistency, if not cardinality,

between the query executed and the MV created would be appropriate to reduce output

- 13 -

rows, except that indexed views may not have row count restrictions since they become

non-deterministic. Instead, the row counts were calculated and each of the 10,809 queries

originally generated were executed using a Python script, and those queries were removed

that took longer than 20 seconds to execute from the query bank or that would result in

more than 1m rows returned, leaving 9,660 queries available for testing, therefore

eliminating 1,149 problem queries that could crash the index creation process further along

the process.

• It was found that the initial existence of more queries in the plan cache than were executed

anomalous (the plan cache and buffers were cleared before testing). Analysis of the plans

in the cache revealed the cause to be the existence of the queries used to select individual

queries from tpcc_queries to run, in the form SELECT query FROM

tpcc_queries.dbo.queries WHERE id = N. This query was not parameterised in Python

and so iterations of N occupied the plan cache. This was filtered out in the diagnostic and

measurement by excluding queries containing the ‘tpcc_queries’ string, by adding a plan

guide forcing parameterisation and by parameterising this in the pyodbc.cursor.execute()

call in Python. No difference is made to the test output since this query is assessed,

deduplicated and rejected by these processes as not belonging to the database under test

(tpcc) and through explicit filtering later in the process.

• It was found that the plan cache management by the RDBMS was unpredictable. Plans

are stored in virtual ‘buckets’ which are stored within the cache. Each type of plan is

allocated to a bucket. There is both a maximum number of items per bucket (for SQL

Server, in the region of 160,000) and a maximum number of overall plans allowed in the

cache, tempered with a maximum overall cache size allowed. Microsoft SQL Server is one

of the few mainstream RDBMS systems that does not allow direct control over the size of

the plan cache – hence, the only adjustment possible is that of maximum server memory

allocated to the instance, which was set to 14GB. Of this, upon reading the system

documentation it was indicated that 75% of the first 4GB is allocated to the plan cache

(3GB) plus 10% of the remainder (10GB) as maximums. It was found, however, that the

plan cache would periodically flush on or around 2,000 plans regardless of the maximum

memory setting. This doesn’t present an operational issue for creating/destroying MVs

since the query parser is run frequently to capture and store the necessary information to

create/destroy the MVs, but it does present issues analysing the plan cache to extract

original query metadata if the cache has been flushed before this step is applied.

- 14 -

There was no workaround to this issue by creating a ‘mock cache’ since the metadata

extraction relies on table-valued system functions and views, the population of which over

which there is no control. In lieu of this, two actions were taken: a) the modification of the

Python caller to parameterise the call to fetch a random query, saving around 25% of the

plan cache; b) the maximisation of the memory available to SQL Server; and c) desisting

from running the client-side Profiler tool alongside the testing, relying on simple loop

counts instead, since it was theorised the memory required to store the Profiler data was

being reallocated from SQL Server by the operating system, with the plan cache the first

casualty. Although turning on the ‘optimize for ad hoc workloads’ setting was considered,

which would leave stubs for single-use plans in the cache rather than full plans, it was

found this would not be suitable for plan performance metadata extraction. Finally, after

some trial and error, a ‘hard stop’ of 1,800 successful executions was put in the Python

caller to maximise cache population before flush.

• To ensure that the query runtime statistics were available before cache flush and unaffected

by the subsequent process code, these statistics were dumped into the ##cs table

immediately prior to query parsing and the Analyse/Use Metadata module was amended to

use this table rather than the system views.

8.5.2 System testing

5 successful end-to-end system tests were completed and the data compiled from each of the stages

into the summaries and the series of graphs shown in the following Tables 8.4 – 8.7 and Fig. 8.8.

With 1,800 queries run from a bank of 9,960 available queries, given random distribution, it is

surmised that 5 tests are sufficient to cover a reasonable proportion, approximately 64% of the

queries available.

Table 8.4: Query Parser / Create/Destroy MVs Phase – Summary Metrics

Test # Queries

Executed

Plans

Cached /

Parsed

M V Links

Created (Qs

with M Vs)

M Vs Defined /

Created

Indexes

/ Tables

Created

Queries with

valid M Vs

1 1801 1464 1462 1186 65.6% 73 53 72.6% 47 6 1186 65.6%

2 1801 1298 1287 1019 56.5% 74 47 63.5% 10 35 1019 56.5%

3 1801 1283 1272 1032 57.3% 74 52 70.3% 11 38 1032 57.3%

4 1801 1261 1251 991 55.0% 74 43 58.1% 10 30 991 55.0%

5 1801 1250 1240 994 55.2% 73 48 65.8% 12 34 994 55.2%

- 15 -

Table 8.5: Analyse MVs/Use Metadata Phase, Summary Metrics I

Test # Original Query

M etadata

Captured

New Query

M etadata

Captured

Comparable

Query M etadata

Captured

of New

Queries with

Lower Costs

than Original

of

Original

Queries with

Lower Costs

than New

1 332 171 171 33 8

2 301 166 166 32 17

3 311 153 153 27 23

4 268 166 166 37 19

5 288 169 169 42 24

Table 8.6: Analyse MVs / Use Metadata Phase, Summary Metrics II

Test # Avg. Cost

Differential for

All Original vs.

New Queries

Avg. Read

Count

Differential

Between Query

Pairs

Total Read

Count

Differential for

All Query Pairs

Average

Efficiency

Differential Per

Query Pair

Total Cost

Differential For

All Query

Pairs

1 0.7622 1261 215653 -4.31269 129.99

2 2.86199 3937 653536 -5.82934 475.10

3 2.69643 3888 594922 -2.18379 412.55

4 2.60160 3641 604448 -7.06265 431.86

5 5.66083 7809 1319851 -4.67521 956.68

Table 8.7: All Phases – Storage and Runtime Costs – Summary Metrics

Test # All Query

Executions

(S)

Query

Parser

(S)

Create/Destroy

M Vs (S)

Analyse/use

M etadata (S)

Total

Runtime

(S)

Total

Additional

DB Objects

(M B)

1 27 2 910 27 966 8,211

2 26 2 354 66 448 5,070

3 27 2 2400 83 2,512 11,521

4 27 2 842 42 913 7,795

5 26 1 629 63 720 13,528

- 16 -

Differentials were captured for many key metrics, as detailed in Tables 8.4 through Table 8.7. Fig.

8.8 shows the total cost differences between the original query versions and the new query versions,

expressed as a floating-point number. Cost differences greater than 0 indicate the new queries

consumed more system resources (as a blended measure as defined by query cost in SQL Server)

than the original queries.

Fig. 8.8: Cost deltas for all queries, all runs

However, it is noted that the standard deviation is somewhat high, and that the mean average of

this data set does not necessarily correspond to the average cost impact of new queries using MVs

that original queries. In Table 8.9, the number of original queries that cost more than the new

queries are counted, likewise the vice versa case, and some basic metrics on the whole data set are

captured.

Table 8.9: Metrics for the cost delta measure, all queries, all runs

Cost delta: Mean average 2.92

Cost delta: Standard deviation 17.19

Cost delta: Original queries > new queries 171.00

Cost delta: New queries > original queries 91.00

Cost delta: New queries = original queries 563.00

This yields the result that there were 171 cases of 825 (20.7%) where the newly generated queries

outperformed the original queries, versus 91 cases (11.0%) where the opposite held true (and 563

queries (68.2%) with no difference observed). In other words, there were more queries that had

improved performance by the new MV process than queries that were adversely affected.

- 17 -

With this in mind, the data is filtered in Fig. 8.10 to observe the cost deltas for all queries where

the new cost is lower than the original cost, to observe the amplitude overall.

Fig. 8.10: Cost Deltas where New Query Cost < Original Query Cost, all runs

Table 8.11: Metrics for the cost delta measure where new query cost < original query cost, all runs

Cost delta: Mean average -1.15

Cost delta: Standard deviation 2.00

The cost savings range from nil to -10.4, with a mean average of -1.15 cost saving and a reliable

standard deviation of 2.0 indicating stability, as shown in Table 8.11. However, as cost in SQL

Server is somewhat relatively defined, this figure needs to be placed in context, particularly in

reference to the average query cost. The analysis above was repeated for the other two key

measures captured, row reads required and efficiency. Tables 8.12 and 8.13 show the total

increases (for original query < new query), total savings (for original query > new query), and

averages for all measures, for cost, rows read and efficiency. The second table shows figures

excluding extreme outliers in the 0-5th and 95th-100th percentile, based on cost delta, necessary due

to the high standard deviation in the data.

- 18 -

Table 8.12: Performance metrics for all processed queries, full range.

Table 8.13: Performance metrics for processed queries,

filtered between 5th - 95th percentile on cost delta.

An average cost saving of -0.2 excluding outliers was noted against an average cost of 0.4 (50% cost

saving) in cases where the original query has higher query costs than the new query. When

including the vice versa case and cases where query costs are identical, a modest increase in costs

(0.46 – 0.4 = 0.06) is observed, a 15% increase overall. Checking the read count totals and

averages, a decrease in number of read counts executed is observed, -5,522 in total with an average

read count saving per query of -41 reads. Overall, a significant increase in read counts from

294,893 (original queries) to 404,247 (new queries), was observed: 37.0%. For cases where new

queries outperformed original queries, a drop in efficiency was noted, by an average of 9%; for the

vice versa case, the drop in efficiency by the new query was pronounced at -41.8%, reflecting the

change in the read counts required.

It was found that in approximately 15-25% of queries, query costs dropped after implementing the

new MVs. This result was borne out across all 5 test groups. This drop shows applicability of the

new MV process to some queries in the set.

8.5.3 Storage and write performance trade-offs

During experimentation the total size of new database objects in the database (views and tables,

the latter masquerading as views) was recorded. Table 8.14 summarises these findings.

- 19 -

Table 8.14: Storage required by new materialised views

It was found the use of MVs to simulate subsets of schemas is viable if and only if the provision of

additional disk space to support this strategy is provided. An average of between 155MB and

294MB was required per MV, with a consistent average of between 40 and 53 new MVs successfully

created per test (1,800 inbound queries). This implementation removes MVs that are no longer

used; it also deduplicates the query and MV definitions, shown during preliminary testing when the

number of MVs did not significantly increase during multiple executions of the process modules

given a steady inbound query load.

8.6 Conclusions

This chapter began with the observation that querying large tables for small quantities of data is

inherently inefficient and a simple efficiency metric was proposed comparing reads required against

available rows of data, defining this for both straightforward contiguous page reads in a table and

against a B+ tree index structure, such as used for clustered and non-clustered indexes. It was

noted that for all cases except row lookups and single-row index seeks, efficiency remained less than

100% and the intention was expressed to improve the overall efficiency of queries through the use

of materialised views to supplement base tables; where such an approach has been identified before

in the literature, the solution has been extended to create a set of processes that analyse inbound

queries, create appropriate materialised views to support those queries, and remove materialised

views that no longer meet the requirements of the inbound query stream. Two key performance

metrics were focused upon, the second being a function of the efficiency; query cost, a blended

measure of CPU, I/O and expected work provided by the query optimiser, and read counts, which

were extracted directly from the RDBMS plan cache.

The results showed that against the TPC-C benchmark dataset, using a query data bank of 9,960

queries in 5 test sets of 1,800 randomly-drawn queries, it was possible to demonstrate some benefits

of the new process. These included a modest reduction in the average plan cost by 50% for queries

which demonstrably ran at lower cost against the original query; however, when including all

queries, including those where MVs made no demonstrable difference (or indeed worsened the

- 20 -

difference), average query cost rose by 15%. Similarly, a minor read count drop (c. 1%) was

demonstrable for queries positively affected by the new process, but an overall increase in reads of

37% when considering queries with original costs above new query costs. Consequently efficiency,

as a function of reads, showed significant drops – approximately 9% and 41% respectively.

It was found that, queries which would not benefit from the MV approach notwithstanding, the

new process has produced significant evidence of plan cost savings approximating 50% (average

1.15 drop against a landscape of queries ranging in relative costs from 0.8 – 3.72) in approximately

15-25% of cases, meaning that 15-25% of queries could benefit from these views by a reduction in

cost varying up to 50%. This means the proposed solution, while in its current form does not

provide evidence of viability to every presented query, may be effective if highly targeted towards

certain types of query. The evidence amassed suggests that given improvements in the

implementation, this solution could achieve the following:

• By including parsing support for parameterised queries, the improvement of the query

uptake into the new dynamic query process by up to 30% (using the same TPC-C

implementation), this figure based on the exclusion percentages noted during testing;

• By improving parsing overall, the exclusion of queries which are unsuitable for the new

process – for example, those involving side-effecting functions – earlier in the process.

• By analysing indexes required by the queries, the creation of effective, targeted materialised

views indexed for the queries using them, significantly lowering read counts.

Some difficulties were found that are inherent to the RDBMS engine. Materialised views in

Microsoft SQL Server do not support OUTER JOINs since the addition, update or deletion from a

base table in an OUTER JOIN can result in the removal of a row, inconsistent with a schema-

bound database object. Oracle Database has some workarounds to this issue but also presents

some weaker limitations. It is suggested that the implementation could be extended by either

removing queries with OUTER JOINs from scope or creating multiple views for the components of

the JOINs and assigning an MV to each component, retaining the OUTER JOIN in the original

query. This approach would also be compliant with relational theory, reducing each one-to-many

relationship to a one-to-one relationship. As this solution was out of scope, this issue was overcome

through replacement of the MVs with tables which have the advantage of identical structures to

MVs in this context but the disadvantage of being static.

Some RDBMSs may not be suitable candidates for a process reliant on the plan cache. As of

MySQL 8.0, the plan cache has been removed from this RDBMS, citing implementation difficulties

- 21 -

(Lord, 2017). Some inventiveness may be required to overcome this consideration – for example by

fetching plans manually from the query optimiser and storing as a task to be done by the database

administrator. However, all other major RDBMS platforms retain their plan caches. More work is

required to overcome the periodic flush of the plan cache noted during testing and which appears to

be unique to the Microsoft SQL Server RDBMS; in many other RDBMS systems, the plan cache is

directly configurable.

Future work on this project would include addressing the implementation points above; more

testing for asynchronicity and long-term effects; improvement of the query parser, perhaps

integrating industry-standard parsing tools such as GNU Bison; extending the implementation of

the MV definition to include queries with OUTER JOINs and more complex structures such as

subqueries, CTEs, system functions, TVFs and variables; extending the implementation with an

indexing strategy to index or re-index MVs periodically in response to query process flow; and

further theoretical work on the efficiency of the various access components in query execution plans

versus theoretical maximum efficiency, to strive to achieve the maximum possible efficiency for

data access in relational systems.

8.7 Chapter Summary

In this chapter, it was demonstrated how the theoretical design for dynamic schema redefinition as

part of the PETAS framework can be illustrated through a set of algorithms and implemented

using standard SQL and simple Python routines. Each component of the dynamic schema

redefinition process was implemented, and these were tested independently, adjusting the

implementation in response to the observations made through unit testing, then testing the

components end-to-end. Modest improvements were found in query performance under some

limited conditions; it was evident that further work to improve the range of queries to which the

new solution could apply is desirable; likewise, the implementation workaround using materialised

views, rather than direct logical-to-physical mappings (e.g., from new schema to page offset), was

necessitated by the need to rewrite some large part of the query engine. It was found the

restrictions inherent in materialised views, including the restriction on outer join operations,

contributed to the low query improvement metrics, and a better, more robust implementation,

particularly of the query parser, may have effected substantial improvements. This latter finding

mirrors one of the key conclusions from the query parser and schema selection mechanisms detailed

in earlier chapters.

However, the presence of positive improvements as measured through both ordinary metrics and

the new efficiency definition (function of rows read vs. rows available) is encouraging, and it is

found that despite open questions about the effectiveness of the implementation, the key ideas

- 22 -

remain viable and further work can focus upon improving, refining and further validating the

solution.

In the final chapter, the results and conclusions are gathered into a narrative, and the findings are

compared and contrasted with the stated aims and objectives. It is sought to conclude whether the

research has been successful in this regard and whether a novel contribution to knowledge has been

made. Chapter 9 concludes with a summary of potential research directions and unresolved

questions to investigate to support the future of PETAS.

- 23 -

Chapter 9: Conclusions and Future Work

9.1 Introduction

This final chapter reflects on the research completed and summarises all the findings. The outputs

are drawn together, starting from the initial literature review, qualitative research and proof-of-

concept problem investigation and leading into the main body of research, the development of

PETAS, into a set of conclusions which are presented through mixed methods evaluation. The

results are examined and validated against the research questions, aims and objectives, seeking to

understand if, and to what extent, these have been successfully met. The novel contribution to

knowledge is revisited, and next steps considered to develop and integrate this research into

existing database platforms. A final summary and detail on the contents of the Appendices to this

document is provided.

9.2 Problem Investigation

9.2.1 Qualitative research

Following the literature review, the design, piloting and deployment of a questionnaire was

undertaken and aimed at data practitioners, with the objective to discover, through a mixture of

structured, multi-choice questions and open questions, the current views of practitioners on

database performance challenges and their potential causes. This survey was piloted with a small

group of individuals including database experts, then the questions and structure were amended in

response to their feedback and the survey was delivered to a wider audience.

Given the initial findings from the literature review weighed against the popularity and ongoing

suitability of relational databases, particularly as solutions for object-oriented data and increased

volumes of data, particular difficulty was found in structuring questions in an objective, unbiased

format. Likert scales were employed as a tool to help reduce bias, adjusted questions in response to

pilot feedback and internal consistency between questions was sought. A simple filter was also

employed at the start of the questionnaire to pre-qualify respondents and details of their experience

collected to further validate the data.

Using thematic analysis, four key themes were extracted; negative ORM behaviour, ORM use

(prevalence thereof); education, awareness and perception; and future outlook. From here, it was

established than many respondents had a poor view of ORMs but an equal number were not

generally familiar with their use. There were few positive opinions for their role in query

- 24 -

performance tuning. It was found the respondents placed the majority of the blame for poor query

performance within their organisations on a lack of education or awareness of relational database

systems in others.

Due to the relatively low number of respondents, few definite quantitative conclusions can be

drawn from the survey outcomes since the potential variance in replies is too high to infer any

reliable statistical output. The high proportion of respondents not able to respond in depth on

ORMs was reflective of a lack of experience with ORMs in general within the respondent

population; in retrospect, not surprising since ORM frameworks sit within application development

frameworks (e.g. Entity Framework within .NET; Hibernate within Java; Django ORM within

Django) and as such, database administrators, developers and architects are unlikely to come into

regular contact with them. On reflection, a more suitable target audience (or a combined audience)

should have included application developers.

The questionnaire findings were supplemented with a small range of interviews with invited

database practitioners. These were conducted as semi-structured interviews; with a range of

‘starter’ questions and points on which to follow up, aligned to each theme of the questionnaire

findings, thus triangulating outcomes, and each interview took place over the course of an hour

with the pace dictated by the participant; the flow of conversation was directed, but in general

sought to elicit the detailed experience and opinions of each candidate in a contextual, meaningful

way. The interview participants were found to be open and participative in the conversation with

very little direction required by the interviewer; all participants were well-experienced and came

from different sectors including consumer website provision and the aeronautics industry.

The findings were analysed using the NVivo software package which allowed codification,

annotation and grouping of the transcript contents, reminiscent of grounded theory and the

approach to the literature review. A frequency breakdown was produced of various survey topics

and, although initially the intention was to perform a semantic analysis, it was found that the

results of this were inconclusive due to the dialogue being mostly technical in nature and not

expressing many marker keywords. Instead, a narrative analysis was used, described in detail in

Chapter 4.

It was found that the interviewers generally held opinions compatible with the findings from the

literature and the survey. Some were heavily critical of the speed and flexibility of relational

platforms – one particularly striking quote:

- 25 -

“[Participant] I think NoSQL DBs will be the future thing. Databases with designs 50-60

years ago, yeah, the initial concepts. So for stuff that was applicable at the time it, it was

good, but with the modern web applications and user interfaces, and just the volume and in

different types of data we can collect. Trying to put it all into a SQL DB doesn't make

sense when you can have something something like BigQuery or MongoDB, that you can

store different types of stuff in there and install get good performance and usage.”

The general apathy and, in places, hostility towards the usefulness of relational database systems

was apparent throughout all three strands of the qualitative research. Interview participants also

attacked the lack of awareness in their peers in writing SQL queries (reflecting the awareness issues

found in the questionnaire); the potential scalability of the systems to store data at volume; and

the speed that relational database systems responded to real-time queries. There was little output

from the interviews on ORMs.

In general, this qualitative research serves to reinforce the case that relational database systems are

in a difficult position; able, theoretically, to support querying at scale, they are nonetheless

struggling with the query antipatterns presented to them by ORM platforms. Relational database

systems are perceived as slow and inflexible; a wide range of interventions have already been

discovered and implemented in the last fifty years, and active research has slowed and has moved

to nonstructured and alternative data representation forms.

9.2.2 Quantitative research

Following the qualitative research, it was sought to reproduce some of the findings of others and

validate the opinions of the survey participants. In Chapter 4, section 4.5, the quantitative

experiments are described. Two studies were undertaken; first, to see if the reported object-

relational impedance mismatch query performance impacts from Ireland et al. [3] and others were

reproducible in a modern relational database platform, and second, to compare and contrast auto-

generated queries from an ORM layer against queries written manually, and to compare

performance results. This latter case is set against a real-life data set, Pacific Ocean buoy sensor

readings.

The first study found that for trivial queries, there was none, or little, difference between execution

plans and consequently between performance outcomes. The ORM framework was able to deal

with simple cases, to prepare queries appropriately, to parameterise and transpose parameters into

stored procedure query calls and single SQL queries. However, as queries became more complex,

especially for selections/projections with multiple selected columns and more than one join, the

- 26 -

elapsed time was much higher than manually-written queries (290ms vs. 118ms, for example, as

shown in Chapter 4 with all other confounding variables controlled for).

It was found that ORM platforms tended to have mitigations for some of these performance defects

which are not always used effectively; for example, the use of lazy loading over eager fetching can

reduce the number of rows transmitted to the client; the forcing of JOINs over nested queries can

simplify execution plans; and the proper parameterisation of literals can reduce recompilations

through better matching in the query cache.

The new query representation solution was developed as a direct response to the latter weakness,

considering queries as computable and relatively comparable objects rather than as strings to be

parsed and bound.

In the second study, it was sought to replicate the emergence of anti-patterns claimed in the

literature by generating queries against a real-life data set. The data set chosen is a set used before

in the literature for data mining purposes and comprises more than 2m data points set over a single

table with 178k rows. To eliminate the possibility that anti-patterns are confined to a particular

database product, the Python and the Django framework with Django ORM was used against

PostgreSQL for the investigation, versus the previous use of Microsoft SQL Server. It was sought

to expand the range of measures from simple execution time to a range of standard metrics as

described in Chapter 4. As the presented data was somewhat simple in schema structure, this was

restructured as a Kimball-type data warehouse schema [4] using fact and dimension tables to have

a consistent and industry-recognised data structure upon which to base the testing.

It was found, with one outlier result, that there was a positive correlation between the complexity

of the presented database query and the time taken to execute the query. Corresponding metrics

such as memory use and plan cache size also increased in line with the execution plan. To

statistically validate the results, t-testing was conducted on the observations of the mean execution

time across the range of tests, but the resultant p-values indicated an 18% chance that these results

were due to chance alone, due in part to a low population of query tests which were analysed

manually. However, direct comparison of figures yielded some observational evidence between sets

of figures that performance differed, if unreliably so, between ORM and non-ORM-generated

queries.

9.3 Query Representation

Following the problem validation and investigation phases, which encompassed both secondary

research through a detailed literature review and primary research through the administration of

survey instruments and the investigation of quantitative outputs using a positivist experimental

- 27 -

approach, the solution, PETAS, was then designed to introduce several features to address

opportunities to improve relational database query performance in response to the findings that

such performance is suffering under the burden of increased data flows, apathy from the

development community for relational solutions and the practical effects of object-relational

impedance mismatch.

PETAS consists of three key areas; the query representation alternative, incorporating a query

parser and adjacency cube generator, rendering queries from SQL into multidimensional arrays; the

schema selection mechanism, which compares the adjacency cubes of an incoming query, the cubes

of all queries in the cache and computes similarity scores before selecting an appropriate schema

variant for the incoming query by using K-nearest neighbour selection on the cached cubes to

predict the most appropriate choice. The third area is the dynamic schema redefinition procedure,

which runs asynchronously and is responsible for generating, destroying and assessing the usefulness

of variant schemas. These schema variants are used by the second component.

First, the query representation mechanism was built, which converts inbound SQL queries to

multidimensional arrays, each array consisting of three dimensions and the intersection of each X-

Y-Z co-ordinate marked with a binary value to indicate association between each dimension.

Columns in the X and Y axes indicate bindable objects in the query and columns in the Z-

dimension indicate subtype of relational expression, with 4 possible choices: selection, intersection,

predication and membership each correlating to their set-theoretic alternative.

The construction of the theoretical model was relatively straightforward, since the language for

proving that SQL queries are representable relationally and vice versa has been long established by

Codd [5] and others. It was shown in the theoretical design that queries constructed as directed

graphs, which are representable as adjacency matrices, have the characteristic of embodying

relationships that the current query parsing methods do not. These relationships, when coupled

with the objects in the query, have the effect of producing a mathematical structure which can be

compared with other mathematical structures of the same type using measures such as Hamming or

Manhattan distance. From this theoretical work, a series of equations, or transformative steps,

were presented and expanded into a set of algorithms that demonstrated the process.

From the implementation perspective, a working implementation was created from the theoretical

design using Python, ingesting SQL queries and outputting multidimensional lists. The

experimental solution was validated by generating queries against another real-life data set used

later in the research component concerning crime data in the US city of Chicago; a random query

generator was written and used in Microsoft SQL Server against this data set to produce 1,000

queries, which were validated manually and it was found that 947 were valid and suitable for test

purposes. The functional testing of these 947 queries showed 100% executed normally. A test

harness was then constructed and the duration recorded for how long the query representation

- 28 -

algorithm took to process each query into the equivalent multidimensional array; these results were

presented in Chapter 6 where it was found the mean average duration to be 1.8ms +/- 1.5ms

standard deviation. This overhead is found to be minimal in the context of query execution which

can take many seconds to resolve a given query and consequently this solution is believed to be

viable.

In Chapter 7 the testing of the query representation mechanism was extended by coupling it with

the similarity scoring mechanism and schema selection process, which are both reliant on the

existence of the query representation process and running end-to-end tests. More on these

outcomes is presented below.

9.4 Similarity Scoring and Schema Selection

The similarity scoring mechanism extends from the provision of the process to transform a database

query from SQL into a multidimensional adjacency cube. From here, it is proposed to insert the

process into the wider database query execution process, where upon receipt of a SQL query, this

new process completes the transformation then compares, using the custom algorithm, the resulting

cube with each previously-generated cube in a new query cache. This, combined with a weighting

system, generates a range of reals, from 0 to 1, which are then placed along the number line in

numerical order and the nearest K neighbours to the query at hand are selected (1) where K is an

independent variable that can be continually adjusted according to the accuracy of the schema

selection mechanism in a separate, asynchronous process.

Once K number of related queries have been isolated, a simple majority vote is used, reading the

sub-schema assignment of each previous query and assigning the majority winner to the new query.

An attempted execution of this query is tried against the selected sub-schema, supplying a query

mapping sub-process to deal with syntactic difficulties, and the outcomes are measured as

performance metrics. The query is then re-executed against the base schema asynchronously to

establish baseline performance. These performance metrics are used to determine the degree of

usefulness of the neighbouring K queries; if the performance is better using the base schema, a

weighting system is used to reduce the weight of the queries; if the performance is better using the

sub-schema, the weights of the neighbouring queries are increased. Due to the potential overhead

sampling some percentage of queries is advocated for side-by-side performance comparison rather

than running this process for each, and every, inbound query.

This process was implemented using a mixture of Python and SQL against PostgreSQL and

Microsoft SQL Server, using a dataset detailing crime data in Chicago from which 4 sub-schemas of

the base schema were constructed, constituting two partitions and two vertical shards.

- 29 -

The initial results were very promising. By connecting the query representation algorithm to the

similarity scoring and schema mapping algorithm and running this against the Chicago data, it was

found that for 5 sample queries, the expected vs. actual similarity scores differed by only 6.2%; in

other words, the new algorithm classified these inbound queries nearly identically to human manual

selection. The next stage was to test at scale.

The process was tested at scale in 10 test sets of 1,000 queries per test set, generated using the

same methodology as used to test the query representation process and detailed in the previous

section. Of these, it was found an estimated mean average failure ratio of 47:1000, leaving on

average 953 valid queries per test run. Syntactic reliability was tested next; were the queries sound

in the sense of having meaning within the schema, and returning rows? Here, difficulties were

encountered; a failure ratio of 837:1000 was observed as some columns selected in mapped queries

did not exist in the shard the process selected, and heavy system resource use was found (CPU,

memory saturation) forcing the upgrade of the test system before proceeding. Several other issues

were found which, together with the mapping error, were fixable by following an iterative fix, test,

integrate strategy. After implementing the fixes, a failure rate of nil was achieved.

Next, two training sets of 1,000 queries each were generated, of which 954 and 955 queries were

suitable for testing, respectively. A wide-ranging set of tests were defined, summarised in Chapter

7, running over 9,500 executions of the algorithm. Significant processing overhead was found to

have contributed to system resource issues, also adding an average of 54ms to each query execution.

However, discounting the processing overhead, a mean reduction in query execution time of 6.2%

was achieved for all queries and for those queries run exclusively against sub-schemas, a reduction

in execution time of 20.6%, a significant result.

Testing the K-adjustment process, it was found this was working as expected with the queries in

the cache observed to have frequently-changing weights, the least-useful queries scoring

progressively lower in the K-nearest neighbour and eventually aging out of the cache. It was

discovered that weight adjustment process meant that the schema classifier was becoming

progressively more accurate with a modest positive correlation across several thousand query

samples. It was then possible to calculate the correlation formula use it to predict how quickly the

system could be brought to a specified degree of accuracy in terms of the number of queries

required to be presented.

The testing was not entirely positive. The query generator was limited in scope by the range of

SQL queries that the new parsing mechanism can process; complex SQL, such as that containing

CTEs, nested queries and side-effecting operators were out of scope, however JOINs are supported.

A modest success of 20% query improvement was demonstrated, but some work is required on the

implementation of the new mechanism since it was difficult to ascertain why more queries did not

fall into scope of, and benefit from, the schema classifier. The new weighting mechanism is also

- 30 -

simple and could potentially be improved for more granularity, and the overall performance

overhead of the algorithm requires that this implementation be refactored for better execution

efficiency. Finally, it is noted that the implementation was put in place alongside an RDBMS,

rather than within it; issues with proprietary formats and engine complexity mean the proper

integration of this solution was not feasible for experimental purposes; in future work, it would be

preferred that the code is refactored, significant efficiency improvements are made, the range of

SQL in scope of processing is expanded (towards the full ANSI-SQL standard, if possible) and the

system is fully integrated into the query engine to establish the full potential of this solution.

9.5 Dynamic Schema Redefinition

For the similarity scoring and schema selection process to function effectively, there must be a

choice of schemas available. Typically, in a relational database platform, a single schema – a

collection of tables – is presented, since they are physical representations of groups of data arranged

in a sequential form. The sequential form may be contiguous storage, or it may be in a B*-tree

arrangement, or some variant; but the table has permanence, and features such as two-stage

locking, and the provision of different transaction isolation levels manage parallel access requests.

Techniques such as partitioning and indexing coupled with broader strategies such as archival and

infrastructural considerations help ensure access requests to these singular objects remain

performant.

The proposed solution relies on the existence of multiple sub-schemas from the base schema; that is

to say, derivations of the base schema, presented as separate logical objects. Using this description,

this appears to be redefining the view, but the difference is that whereas views are logical

representations of SQL queries which, when called upon, silently map the executing query to the

base schema and return the results, the proposed solution is more akin to materialised views, which

rely on the sub-schema definitions being separate database objects in their own right, with an

independent existence, schema-bound to changes in the base schema. Yet, ideally, the solution

would not mirror materialised views; it is proposed to use wholly logical definitions which, when

called, do not map to the base schema but access the pages on which the data resides directly.

This difference is subtle but important, since the execution plan used would reflect the sub-schema

arrangement and therefore may perform better than the view, whose execution plan reflects the

calls upon the underlying base schema objects. These sub-schemas may be supported with non-

clustered indexes and other structures, but the data remains represented once and once only, and

the base schema remains uninvolved.

- 31 -

The experimentation and testing undertaken fell short of this goal due to the lack of support for

direct page lookups and accesses in any of the RDBMS platforms. Although these functions are

integral parts of the database engine, they are not directly callable and therefore inaccessible unless

the database engine source code, proprietary in many RDBMSs, can be accessed and amended.

This remains a possibility for some open-source tooling such as PostgreSQL and MySQL. However,

the closest analog was chosen to represent the direct access idea, the materialised view.

These algorithms were presented in Chapter 5 for the dynamic schema redefinition process, which

consists of several components, shown in detail in Chapter 8. The query parser is responsible for

accepting as input a database query in SQL form, and tokenising this query, identifying the

attributes, predicates and relations within it. There is some overlap here with the query parser

written for the query representation process since both components must shred a query to its

component parts. Next, the information is written to temporary storage, and two processes come

into play; the create and destroy MVs (materialised views, used in place of sub-schemas) phase

assesses the contents of the temporary tables and based on execution count and other factors,

creates appropriate sub-schemas that fit the queries. These are created in the target database.

The plan is written to a a new cache, and using similar logic to the feedback loop in the similarity

scoring and schema mapping process, it is assessed whether the query would run faster against the

sub-schema or the base schema. Performance data is collected on both cases and this is written to

the cache. On re-presentation of the query to the engine, the query is checked for its presence in

the cache and the preferred schema is noted. This preferred schema is used to run the query.

Interfacing with the previously-defined components, these schemas are under constant review by

this process and destroyed when no longer used. The list of schemas available and the cache

indicating chosen schema per query are combined with the cache from the similarity scorer and

schema mapper. As the latter runs, weights for the various queries are adjusted. As the dynamic

schema process runs, schemas, with an entirely abstract existence, are created and destroyed.

Throughout the testing, mixed results were found. It was found that the implementation of a

working schema derivation algorithm was technically challenging; database queries, although using

a finite syntax, have an extensive range of different forms and identification of sub-schemas was

particularly error-prone. The TPC-C benchmark data set was used and against this schema, 9,660

distinct queries were generated. 1,462 queries were ran and cached before cache flush (a limit

arrived at through trial-and-error) and of these, it was found 99.9% were suitable for mapping to

new sub-schemas (MVs substituting here). From the queries, the process was able to group

selections, predicates and relations and simplify and aggregate queries to create 53 new sub-schemas

from which the testing was able to be based.

However, several practical issues arose. The MVs created only become MVs once indexes are

created upon them; in Microsoft SQL Server, the test platform, a high failure rate was encountered

- 32 -

when implementing the MVs: only 6 of the 53 had indexes created successfully, with various

limitations such as the use of non-key columns in OUTER JOINs prohibiting their use. This issue

was overcome by creating fixed tables in lieu of MVs for these cases.

For the subset of queries suitable for the test harness, it was found that 19.3% of queries decreased

in actual execution costs using this new technique. The implementation, like the implementation of

the similarity calculator and schema selector, lacked full ANSI-SQL support which restricted the

range of queries suitable for this approach to approximately one-tenth of all queries generated. It

was also found that 4.7% of queries increased in query execution cost.

However, despite the limited range of queries, the indicative results were that this approach has

some potential. The process to create and destroy new sub-schemas was demonstrated working

(MVs and tables standing in) in real-time, a process not currently present in any RDBMS. Ise of

the new cache for schema mapping was demonstrated; the asychronicity of the process was also

demonstrated, allowing this to run alongside the ordinary cost-based query optimiser without

interference in the core operations of the query engine; and the process of objectively assessing a

given query for performance against multiple schemas was shown to be working. With refinement,

it appears this process is viable for inclusion in RDBMS systems. With the same style of cache

used in dynamic schema redefinition as the schema selector using the K-nearest neighbour process,

it was also shown how the weight-based query classifier can work hand-in-hand with the schema

redefinition process in schema mapping, although it is acknowledged that the testing did not

include systemic end-to-end testing since the components were individually tested on different

RDBMSs and using different test data sets.

The new efficiency measure was useful in assessing the access costs of queries for this component,

and there is potential to develop this query measure as a universal measure, as query cost is

currently heterogenous and ill-defined across all RDBMS platforms.

More detail on the test outcomes was presented in Chapter 8.

- 33 -

9.7 Assessing the Research Questions, Aims and Objectives

The research questions, aims and objectives presented in Chapter 1, section 1.4 are now revisited to

establish to what extent the stated goals have been met.

The original goals are presented in italics and commentary is presented underneath each item.

9.7.1 Research questions

a. As the demands of data processing have evolved from closed systems with known data

structures driven by fixed schemas to open, unstructured systems driven by the

applications, what disadvantages can be identified with the current object-relational

database model given this evolution, and how can these be overcome?

Through the literature review and qualitative research, a range of disadvantages were

established with object-relational relationships, particularly the existence and taxonomy of

object-relational impedance mismatch. This topic has wide coverage in the literature and

both academic and industrial practitioners have commented extensively on the pitfalls in

database performance that are manifest from this phenomenon. The literature review

brought together the seminal sources and supplemented this with survey instruments,

where a level of apathy and, to an extent, hostility was established to exist towards

relational database platforms, partly as a result of the perceived difficulty of working with

object-oriented sources. These negative artefacts were demonstrated, termed anti-patterns,

through original primary research on two different RDBMSs, details of which were

published in two separate conference proceedings.

Some existing mitigating tactics were established for overcoming these performance

degradations, including the production of a list of recommendations for tuning ORM

products; however, the original contribution in the form of PETAS is designed to, amongst

other goals, reduce recompilations by normalising queries into adjacency matrices instead of

using text-based parsers; encourage query re-use; and to present a method of using query

subsets to improve performance against the backdrop of ORM-generated queries.

b. Can a new theory for query representation be developed as an alternative to representing

queries as semantic objects? Is there an accompanying viable practical approach to

implementing this new theory to overcome the disadvantages of storing and caching queries

as non-comparable semantic objects and can this be used to improve the parsing and pre-

optimisation stages of the query optimiser?

- 34 -

The contribution of a new theory combined with the algorithms and sample

implementation is one key component of the novel contribution to knowledge that this

research produces. An entirely new technique was developed for query mapping, not

previously represented in the literature, as a response to the research gap identified on the

subject of improving query parsing efficiency. It was noted that current and historical

parsers all, without exception, use text-based parsing methods, parse trees and object

binding, neglecting the computational nature of SQL queries being extrusions of the

relational algebra; an alternative approach was invented and demonstrated that added, on

average, less than 2ms overhead to the query parser and resulted in a method of comparing

queries that is superior for relative comparability than the current methods.

It was shown through experimentation that the outputs from the implemented process

closely mirrored the similarity scores expected from a human expert; however it is

acknowledged that there exist limitations in the range of ANSI-SQL that the parser is

capable of handling, a limitation encountered for most of the qualitative research outputs.

Expanding this range and refactoring the parser is a goal for future research and

development of these ideas.

c. Can other approaches from alternative computational disciplines, such as machine learning,

be applied to extend the current object-relational database storage and management

methodologies, creating a responsive model that learns from system inputs to optimise

system outputs?

A new weighting system was created that was updateable in response to the relative

execution times observed from running queries against a base schema and a sub-schema.

This weighting mechanism was described in both theoretical and practical terms, providing

the theory, the algorithms and the code listings, and experiments were designed and

executed to validate whether the weights were updated as expected. It was found that the

weighting mechanism worked as designed, with queries aging out for disuse as a result of

plummeting weights correctly removed from the cache and queries with high comparative

applicability to inbound queries having weights incremented as planned. This technique

was K-nearest-neighbour with an updateable K-value, the process for which was also

provided and tested successfully.

- 35 -

d. Can schema representation and usage in RDBMS systems be adjusted to incorporate more

of the theoretical capabilities of axiomatic set theory, particularly the Zermelo-Fraenkel

axiom of the schema of separation? Does such an approach work theoretically for query

binding, and can such an approach be implemented in practice?

The ZFC axiom schema of separation formalises the idea that separate subsets can form as

derivations of base sets (or super/power-sets) and that these subsets are sets distinct from

the parent set. Through the dynamic schema redefinition research component, separate

subsets were defined distinct from the base sets; however, the implementation of the same

suffered since the precise design that was aimed to implement – the logical representation

of subsets accessing pages directly from disk, bypassing the base schema – was not feasible

in current RDBMS systems since the source code for the query engine required extensive

amendments. Therefore, only limited validation of this idea was performed, although the

results were encouraging.

9.7.2. Research aims

a. To research the effects of object-relational impedance mismatch and associated factors,

such as the impacts of big data that affect relational database query optimisation

performance; to engage with the industry practitioner community to research the real-life

performance consequences of queries generated from non-traditional sources, including

ORM frameworks, upon relational databases.

Through the literature review and qualitative research, the details of various anti-patterns

emerging from ORMs were established and, using the survey outputs, commentary was

offered upon the influence of the ‘Vs’ of big data upon the perceived performance of

relational database platforms. The primary research outputs presented in Chapter 4 were

used to demonstrate the ORM anti-patterns. In terms of qualitative research, this aim was

not achieved in full. The selection of database practitioners was deficient in that the

community of respondents did not include application developers who are most likely to use

ORM products on a regular basis; fully half of the respondents did not have any

meaningful insight or commentary to make upon ORM technology, and the interview

participants were equally reticent on the subject. However, valuable opinions from the

participants on performance issues encountered within database systems were extracted,

and it was noted that non-traditional sources included data at volume (the first ‘V’ of big

data) which, according to some respondents, their existing RDBMS platforms struggled to

- 36 -

cope with.

c. To identify and develop a novel solution to any adverse performance issues arising from

these consequences; to test and validate the solution, and to establish an overarching design

framework based upon this solution, detailed at both the theoretical and implementational

level, to form the foundation of future work in developing the theoretical bases of this

solution further.

PETAS has been designed and developed; a multi-component model in response to

performance difficulties arising from ORMs and big data challenges, which is detailed in

this research. The overall success was mixed; most elements of the solution were

demonstrated working, but further research is required for full implementation and

integration into current RDBMSs. The tests conducted were extensive, employing

primarily quantitative testing and the scientific, positivistic method; however, the

qualitative research outputs were also valuable in validating and refining the problem

definition and shaping the solution. Solution validation was only moderately successful;

while there is confidence that the quantitative validation for each component and for some

integrations (e.g., the query representation component, the similarity scoring component

and the schema mapper component) were successful, end-to-end system testing was not

fully completed due to a disparity in the platforms and the data sets used for the individual

component testing.

Due to the difficulties of integrating this within an RDBMS engine, the original planned

workshop/focus group approach for qualitative validation with database practitioners was

not feasible; this was exacerbated by difficulties identifying a target set of participants for

the same, given that object-relational impedance mismatch is a niche area of research.

However, this research has been able to present a unified solution design under the PETAS

umbrella and detail how the components integrate with quantitative experimental outputs

bolstering the validation of the design.

9.7.3 Research objectives

a. To provide a summary review of the key technical underpinnings for the topics of this

research, and to conduct a topical critical literature review of performance optimisation

literature, both academic and professional, in the relational field together with related

topics.

- 37 -

This objective has been met by providing the review detailed in Chapters 2 and 3, forming

a summary-based background and introductory review of the literature followed by a deep-

dive topical and technical literature review in the second chapter.

b. That the literature review in (a) encompasses the evolution of data in information systems;

how data has been stored, categorised and measured, with emphasis on the trends and

future developments required from data management frameworks to support these

expectations.

The literature review encompasses a historical overview of relational database systems and

the contemporary view, noting new challenges. Topical sections were presented including

the role of big data and changing landscapes on database concerns, and extensive research

was carried out on the role of ORMs in database query performance.

c. To investigate and identify weaknesses in current database design and query handling

approaches, with particular emphasis on query representation and schema design.

Through development of the query representation solution, a core weakness was identified;

that queries are parsed as if they are textual objects, in the same way that natural

language is parsed, without consideration that queries are extrusions of relational algebra

using a finite syntax and as such are computable, comparable and could be represented in a

form more suited to similarity analysis. This subject was explored in Chapters 5 and 6,

culminating in a design centring on graph-theory inspired multidimensional adjacency

matrices, for which the term ‘cubes’ was coined, and it was demonstrated how these query

representations are comparable, whereas SQL query text is not.

d. To validate any gaps identified in database performance optimisation research by collecting

and analysing qualitative subjective data from industrial practitioners and from academic

professionals.

Two survey instruments were carried out; a questionnaire, targeted at database

practitioners, which was formally structured using Likert scaling and free-form answers.

From these results, the findings were arranged into themes and questions, and from this a

second survey instrument was developed, the semi-structured interview, from which the

questions derived from the questionnaire findings, triangulating the investigation. The

interviews successfully uncovered opinions and experiences around working with data at

- 38 -

scale and responses were codified and classified using a grounded-theory-like approach,

reaching a set of narrative conclusions detailed in Chapter 4.

e. To identify suitable approaches to developing a conceptual solution to address the identified

weaknesses, generalising this solution into a theoretical framework to augment current

database storage designs, access methods, management processes and structural

conventions, suitable for implementation across platforms.

The PETAS framework is presented as a solution to identify the weaknesses in query

representation, the weaknesses evidenced by ORMs in excessive recompilations and poor

parsing and the weaknesses in relational systems in dealing with the variety of queries

presented. This solution is presented theoretically in Chapter 5, and algorithmically and

through experimental implementation in Chapters 6-9.

f. To investigate if alternative computational optimisation tools and approaches, such as

machine learning algorithms, can be used within a solution to the identified performance

optimisation problems; if so, to present such a solution design and implementation.

The proposed solution does not rely on machine learning techniques, and beyond the

consideration of a machine-learning classifier, this research is not centrally concerned with

the machinations of ML as a technique for augmenting database query performance. The

discipline of ML was used as a toolbox of potential techniques, from which K-nearest

neighbour was selected; to this extent, the objective has been met, but an extensive review

of all possible techniques in the computer science domain was not undertaken to help

achieve the goals; rather, following the pragmatic research philosophy discussed in Chapter

1, a ‘what-works’ approach was used and the solution was developed iteratively – a

bottom-up, rather than top-down, spiral software development lifecycle.

g. To evaluate the contributions of this research and propose new directions for further work

based on the outcomes that were achieved.

The conclusions are presented both on a chapter-by-chapter basis for each element of the

primary and secondary research, and as a set of narrative conclusions in this chapter. In

section 9.9 of this chapter, future research directions are discussed.

- 39 -

9.8 Future Research Directions

This research met many of the research questions, aims and objectives, however there exist various

opportunities to correct, enhance and validate the proposed solution further.

First, further work is proposed to understand the extent of the ORM problem from the application

development perspective. The omission of application developers as a potential target audience for

the survey questions was an oversight which led to inferior data outcomes from the qualitative

research in terms of ORM efficiencies; while the survey instruments had value, the literature review

and other primary research were relied upon to qualify the ORM performance issues in more precise

terms.

Secondly, further development of the query representation method and algorithmic implementation

is recommended. The former should be developed further and proven against the relational algebra

or the relational calculus; the latter should encompass the whole of the ANSI-SQL standard, in

order to be viable and of practical use when integrating to mainstream RDBMS products. There

are plenty of opportunities to develop the academic ideas underpinning this innovation, but also to,

for example, develop and deploy this solution as an augmentation to an open-source RDBMS like

PostgreSQL or MySQL as a product fork.

Thirdly, it is proposed to refactoring all the implementation code for the PETAS components for

better intrinsic performance. The choice of Python was, it is believed, a contributor to substandard

application performance, since lower-level languages have better memory and thread efficiency;

both measures were observed consuming system resources in testing; it is also quite clear that these

implementations could be implemented in more efficient code. Future work would include

recreating these implementations with a wider range of tests to strengthen the validity of the

findings.

Finally, in the broader sense, the research findings uncovered an appetite within the technical and

business community for data storage and exploration tools capable of dealing with the demands of

big data. Today’s databases must be accommodating of unstructured or hybrid data types, be

capable of withstanding high volumes of varying data presented at high velocity; must be

performant, easy-to-use, understandable and accessible to a wide audience. On several of these

points, current RDBMSs fail. Future work in the integration of those features inherent in non-

relational databases to the relational database model, in the manner presented by original object-

relational database proponents, may help to alleviate the apathy towards the relational database

model that has driven many developers to using non-relational systems.

- 40 -

9.9 Chapter Summary

This chapter brought together the conclusions from the problem investigation, solution design and

and testing and validation. The components of PETAS were described in brief and the findings

were discussed, with comments upon their validity and aptitude in meeting the stated goals. The

research questions, aims and objectives were revisited and, for each item, commentary was offered

on whether the item was met. The novel contributions to knowledge were considered and

enumerated as outputs from the research. Future research directions were discussed and next steps

outlined in improving the PETAS framework, drawing upon the lessons learned throughout this

research project.

References follow. In the Appendices, the supplementary material is presented.

- 41 -

References

The reference format follows the Harvard (10th edition) ‘CiteThemRight’ variant supplied by

Staffordshire University, available here: https://libguides.staffs.ac.uk/ld.php?content_id=9572296

(Accessed 26 February 2021).

Geographic locations of publishers are now omitted as per the latest Harvard guidance.

Chapter 1

[1] SolidIT GmbH (2017). DB-Engines Ranking - popularity ranking of database management

systems. Available at: https://db-engines.com/en/ranking (Accessed 26 June 2017).

[2] Codd, E.F. (1970). ‘A relational model of data for large shared data banks’.

Communications of the ACM, 13(6), pp.377-387.

[3] Microsoft Corporation, u.d. SQL Server technical documentation. Available at:

https://docs.microsoft.com/en-us/sql/sql-server/?view=sql-server-ver15 (Accessed 19

January 2021).

[4] Oracle Corporation (2021). Oracle Database. Available at:

https://www.oracle.com/database/ (Accessed 19 Jan. 2021).

[5] IBM Corporation (2021). IBM DB2. Available at: https://www.ibm.com/uk-

en/analytics/db2 (Accessed 19 Jan. 2021)

[6] Ireland, C., Bowers, D., Newton, M. and Waugh, K. (2009). ‘A classification of object-

relational impedance mismatch’. First International Conference on Advances in

Databases, Knowledge, and Data Applications, pp. 36-43. Available at:

https://ieeexplore.ieee.org/abstract/document/5071809 (Accessed 18 November 2020).

[7] Atzeni, P., Jensen, C.S., Orsi, G., Ram, S., Tanca, L. and Torlone, R. (2013). ‘The

relational model is dead, SQL is dead, and I don't feel so good myself’. ACM SIGMOD

Record, 42(2), pp.64-68.

[8] Gigaom. 2017. Facebook shares some secrets on making MySQL scale. Available at:

https://gigaom.com/2011/12/06/facebook-shares-some-secrets-on-making-mysql-scale/

(Accessed 26 June 2017).

[9] Sanders, G.L. and Shin, S. (2001). ‘Denormalization effects on performance of RDBMS’.

Proceedings of the 34th Annual Hawaii International Conference on System Sciences, p.

3013-3018. Available at:

https://www.computer.org/csdl/proceedings/hicss/2001/0981/03/09813013.pdf (Accessed 4

March 2019).

[10] Karwin, B. (2017). SQL Antipatterns. Pragmatic Programmers.

[11] Atzori, L., Iera, A. and Morabito, G. (2010). ‘The Internet of Things: a survey’.

Computer Networks, 54(15), pp. 2787-2805.

[12] Scuotto, V., Ferraris, A. and Bresciani, S. (2016). ‘Internet of Things’. Business Process

Management Journal, 22(2), pp. 357-367.

[13] Laplante, P.A. and Laplante, N. (2016). ‘The Internet of Things in Healthcare: Potential

Applications and Challenges’. IT Professional, 18(3), pp. 2-4.

[14] Yin, Y., Zeng, Y., Chen, X. and Fan, Y. (2016). ‘The internet of things in healthcare: an

overview’. Journal of Industrial Information Integration, vol. 1, pp. 3-13.

[15] Mabry, P.L. (2011). ‘Making Sense of the Data Explosion’. American Journal of

Preventive Medicine, 40(5), pp. 159-161.

[16] Degaut, M. (2016). ‘Spies and Policymakers: Intelligence in the Information Age’.

Intelligence and National Security, 31(4), pp. 509-531.

[17] Simmons, B.A. (2011). ‘International Studies in the Global Information Age’.

International Studies Quarterly, 55(3), pp. 589-599.

https://libguides.staffs.ac.uk/ld.php?content_id=9572296
https://db-engines.com/en/ranking
https://docs.microsoft.com/en-us/sql/sql-server/?view=sql-server-ver15
https://www.oracle.com/database/
https://www.ibm.com/uk-en/analytics/db2
https://www.ibm.com/uk-en/analytics/db2
https://ieeexplore.ieee.org/abstract/document/5071809
https://gigaom.com/2011/12/06/facebook-shares-some-secrets-on-making-mysql-scale/
https://www.computer.org/csdl/proceedings/hicss/2001/0981/03/09813013.pdf

- 42 -

[18] Maule, A., Emmerich, W. and Rosenblum, D.S. (2008). ‘Impact analysis of database

schema changes’. Proceedings of the 30th International Conference on Software

Engineering, pp. 451-460.

[19] Søndergaard, J. (1970). ‘Data Models and Query Languages’. Communications of the

ACM, 13(6), pp.377-387.

[20] Codd, E.F. (1971). ‘A data base sublanguage founded on the relational calculus’.

Proceedings of the 1971 ACM SIGFIDET Workshop on Data Description, Access and

Control, pp. 35-68.

[21] Beck, K., Grenning, J., Martin, R.C. et al. (2017). Manifesto for Agile Software

Development. Available at: http://agilemanifesto.org/ (Accessed 26 June 2017).

[22] Ganesh Chandra, D. (2015). ‘BASE analysis of NoSQL database’. Future Generation

Computer Systems, vol. 52, pp. 13-21.

[23] Atzeni, P., Bugiotti, F. & Rossi, L. (2014). ‘Uniform access to NoSQL systems’.

Information Systems, vol. 43, pp. 117-133.

[24] Torres, A., Galante, R., Pimenta, M.S. and Martins, A.J.B., (2017). ‘Twenty years of

object-relational mapping: A survey on patterns, solutions and their implications on

application design’. Information and Software Technology, vol. 82, pp. 1-18.

[25] Poe, C. (2017). ‘How the Database Will Hurt your Startup’. Available at:

https://www.linkedin.com/pulse/how-database-hurt-your-startup-curtis-poe (Accessed 1

June 2017).

[26] Creswell, J.W. (2003). Research Design: Qualitative, Quantitative, and Mixed Methods

Approaches. 2nd edn. Sage Publications.

[27] Patton, M.Q. (1990). Qualitative Evaluation and Research Methods. 2nd edn. Sage

Publications.

[28] Ormerod, R. (2006). ‘The History and Ideas of Pragmatism’. Journal of the Operational

Research Society, 57(8), pp. 892-909.

[29] Melles, G. (2008). ‘New Pragmatism and the Vocabulary and Metaphors of Scholarly

Design Research’. Design Issues, 24(4), pp. 88-101.

[30] Schwandt, T.A. (1994). ‘Constructivist, interpretivist approaches to Human Inquiry’.

Handbook of Qualitative Research, vol. 1, pp.118-137.

[31] Williams, M. (2000). ‘Interpretivism and Generalisation’. Sociology, 34(2), pp.209-224.

[32] Misak, C. (2013). ‘Rorty, Pragmatism, and Analytic Philosophy’. Humanities, 2(3), pp.

369-383.

[33] Beeri, C., Bernstein, P.A. and Goodman, N. (1978). ‘A Sophisticate's Introduction to

Database Normalization Theory’. Proceedings of the 4th International Conference on Very

Large Data Bases, vol. 4, pp. 113-124.

[34] Fagin, R. (1979). ‘Normal Forms and Relational Database Operators’. Proceedings of the

1979 ACM SIGMOD International Conference on Management of Data, pp. 153-160.

[35] Lee, H. (1995). ‘Justifying database normalization: a cost/benefit model’. Information

Processing and Management, 31(1), pp.59-67.

[36] Floridi, L. (ed). (2008). The Blackwell Guide to the Philosophy of Computing and

Information. John Wiley & Sons.

[37] Creswell, J. and Plano Clark, V. (2011). Designing and Conducting Mixed Methods

Research. 2nd edn. Sage Publications.

[38] Hesse-Biber, S.N. (2014). Mixed Methods Research: Merging Theory with Practice. The

Guilford Press.

[39] Saunders, M., Lewis, P. and Thornhill, A. (2009). Research Methods for Business

Students. Pearson Education.

[40] Lapan, S.D. (2012). Qualitative Research: An Introduction to Methods and Designs, pp.

41. Jossey-Bass.

[41] Charmaz, K. (2014). Constructing Grounded Theory. Sage Publications, pp. 5-8.

[42] Colley, D. and Stanier, C. (2017). ‘Identifying New Directions in Database Performance

Tuning’. Procedia Computer Science, vol. 121, pp. 260-265. Available at:

https://www.sciencedirect.com/science/article/pii/S1877050917322275 (Accessed 02

January 2021).

[43] Date, C.J. (1990). Relational Database Writings, 1985-1989, volume 1. Addison Wesley.

http://agilemanifesto.org/
https://www.linkedin.com/pulse/how-database-hurt-your-startup-curtis-poe
https://www.sciencedirect.com/science/article/pii/S1877050917322275

- 43 -

[44] Taylor, S.J., Bogdan, R. & Devault, M.L. (2016). Introduction to Qualitative Research

Methods: A Guidebook and Resource. 4th edn. John Wiley & Sons.

[45] Boehm, B.W. (1988). ‘A Spiral Model of Software Development and Enhancement’.

Computer, 21(5), pp.61-72.

Chapter 2

[1] Whitmore, A., Agarwal, A. and Da Xu, L. (2015). ‘The Internet of Things—A Survey of

Topics and Trends’. Information Systems Frontiers, 17(2), pp.261-274. Available at:

https://link.springer.com/article/10.1007%2Fs10796-014-9489-2 (Accessed 4 March 2019).

[2] Sharma, A., Schuhknecht, F.M. and Dittrich, J. (2018). ‘The case for automatic database

administration using deep reinforcement learning’. Preprint. arXiv. Available at:

https://arxiv.org/pdf/1801.05643.pdf (Accessed 4 March 2019).

[3] Abadi, D., Agrawal, R., Ailamaki, A., Balazinska, M. et al. (2014). ‘The Beckman Report

on Database Research’. ACM SIGMOD Record, 43(3), pp.61-70. Available at:

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/44906.pdf (Accessed

4 March 2019).

[4] Elmasri, R. and Navathe, S. (2010). Fundamentals of Database Systems. Addison-Wesley

Publishing Company.

[5] Stonebraker, M. and Kemnitz, G. (1991). ‘The POSTGRES Next-Generation Database

Management System’. Communications of the ACM, 34(10), pp. 78-92. Available at:

https://doi.org/10.1145/125223.125262 (Accessed 19 May 2018).

[6] Codd, E. (1970). ‘A relational model of data for large shared data banks’.

Communications of the ACM, 13 (6), pp. 377-387. Available at:

https://doi.org/10.1145/362384.362685 (Accessed 10 October 2016).

[7] Stoll, R. (1979). Set Theory and Logic. Dover Publications.

[8] Date, C. and Darwen, H. (2000). Foundation for Future Database Systems: The Third

Manifesto. 2nd edn. Addison-Wesley.

[9] Biskup, J., Dayal, U. and Bernstein, P.A. (1979). ‘Synthesizing independent database

schemas’. Proceedings of the 1979 ACM SIGMOD International Conference on

Management of Data, pp. 143-151. Available at: https://doi.org/10.1145/582095.582118

(Accessed 06 June 2018).

[10] Coronel, C. and Morris, S. (2016). Database Systems: Design, Implementation and

Management. Cengage Learning.

[11] Nayak, A., Poriya, A. and Poojary, D. (2013). ‘Types of NOSQL databases and its

comparison with relational databases’. International Journal of Applied Information

Systems, 5(4), pp.16-19. Available at:

https://www.researchgate.net/profile/Dikshay_Poojary/publication/302557703_Article_T

ype_of_nosql_databases_and_its_comparison_with_relational_databases/links/5aeaa2b

50f7e9b837d3c40e7/Article-Type-of-nosql-databases-and-its-comparison-with-relational-

databases.pdf (Accessed 21 April 2019).

[12] International Standards Organisation (2016). ISO/IEC 9075:2016. Available at:

https://www.iso.org/standard/63555.html (Accessed 27 February 2016).

[13] Liu, Z.H. and Gawlick, D. (2015). ‘Management of Flexible Schema Data in RDBMSs -

Opportunities and Limitations for NoSQL’. CIDR. Available at:

http://cidrdb.org/cidr2015/Papers/CIDR15_Paper5.pdf (Accessed 4 March 2019).

[14] Batra, R. (2018). ‘A History of SQL and Relational Databases’ in SQL Primer. Apress,

pp. 183-187.

[15] Bertino, E. and Sandhu, R. (2005). ‘Database security - concepts, approaches, and

challenges’. IEEE Transactions on Dependable and Secure Computing, 2(1), pp.2-19 .

Available at:

https://search.proquest.com/openview/e03943036a308be889aa30aece031fe3/1?pq-

origsite=gscholar&cbl=27603 (Accessed 24 October 2017).

https://link.springer.com/article/10.1007%2Fs10796-014-9489-2
https://arxiv.org/pdf/1801.05643.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/44906.pdf
https://doi.org/10.1145/125223.125262
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/582095.582118
https://www.researchgate.net/profile/Dikshay_Poojary/publication/302557703_Article_Type_of_nosql_databases_and_its_comparison_with_relational_databases/links/5aeaa2b50f7e9b837d3c40e7/Article-Type-of-nosql-databases-and-its-comparison-with-relational-databases.pdf
https://www.researchgate.net/profile/Dikshay_Poojary/publication/302557703_Article_Type_of_nosql_databases_and_its_comparison_with_relational_databases/links/5aeaa2b50f7e9b837d3c40e7/Article-Type-of-nosql-databases-and-its-comparison-with-relational-databases.pdf
https://www.researchgate.net/profile/Dikshay_Poojary/publication/302557703_Article_Type_of_nosql_databases_and_its_comparison_with_relational_databases/links/5aeaa2b50f7e9b837d3c40e7/Article-Type-of-nosql-databases-and-its-comparison-with-relational-databases.pdf
https://www.researchgate.net/profile/Dikshay_Poojary/publication/302557703_Article_Type_of_nosql_databases_and_its_comparison_with_relational_databases/links/5aeaa2b50f7e9b837d3c40e7/Article-Type-of-nosql-databases-and-its-comparison-with-relational-databases.pdf
https://www.iso.org/standard/63555.html
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper5.pdf
https://search.proquest.com/openview/e03943036a308be889aa30aece031fe3/1?pq-origsite=gscholar&cbl=27603
https://search.proquest.com/openview/e03943036a308be889aa30aece031fe3/1?pq-origsite=gscholar&cbl=27603

- 44 -

[16] Olivier, M.S. (2002). ‘Database privacy: balancing confidentiality, integrity and

availability’. ACM SIGKDD Explorations Newsletter, 4(2), pp.20-27. Available at:

http://mo.co.za/open/dbpriv.pdf (Accessed 4 March 2019).

[17] Bjeladinovic, S. (2018). ‘A fresh approach for hybrid SQL/NoSQL database design based

on data structuredness’. Enterprise Information Systems, 12(8-9), pp.1202-1220. Available

at: https://www.tandfonline.com/doi/abs/10.1080/17517575.2018.1446102 (Accessed 4

March 2019).

[18] Liu, Z.H., Hammerschmidt, B., McMahon, D., Liu, Y. and Chang, H.J. (2016). ‘Closing

the functional and performance gap between SQL and NoSQL’. Proceedings of the 2016

International Conference on Management of Data, pp. 227-238.

[19] Agrawal, D., Chawla, S., Contreras-Rojas, B., Elmagarmid, A. et al. (2018). RHEEM:

Enabling Cross-Platform Data Processing: May the Big Data be With You!. Proceedings

of the VLDB Endowment, 11(11), pp.1414-1427. Available at:

https://www.ifi.uzh.ch/dam/jcr:002a7c16-46b4-497b-876f-ee5640c60a49/RHEEM.pdf

(Accessed 20 April 2019).

[20] Ireland, C., Bowers, D., Newton, M. and Waugh, K. (2009). ‘A classification of object-

relational impedance mismatch’. First International Conference on Advances in

Databases, Knowledge, and Data Applications, pp. 36-43. Available at:

https://ieeexplore.ieee.org/abstract/document/5071809 (Accessed 18 November 2020).

[21] Khan, M, Uddin, M. and Gupta N. (2014). ‘Seven V’s of Big Data; Understanding Big

Data to extract value’. Proceedings of the 2014 Zone 1 Conference of the American

Society for Engineering Education: “Engineering Education: Industry Involvement and

Interdisciplinary Trends”. Available at: http://doi.org/10.1109/ASEEZone1.2014.6820689

(Accessed 4 March 2019).

[22] Molková, L. (2012). Theory and Practice of Relational Algebra: Transforming Relational

Algebra to SQL. Lambert Academic Publishing.

[23] Astrahan, M.M., Blasgen, M.W., Chamberlin, D.D., Eswaran, K.P., Gray, J.N., Griffiths,

P.P., King, W.F., Lorie, R.A., McJones, P.R., Mehl, J.W. & Putzolu, G.R. (1976).

‘System R: Relational approach to database management’. ACM Transactions on

Database Systems, 1(2), pp.97-137.

[24] Ceri, S. and Gottlob, G. (1985). ‘Translating SQL into relational algebra: Optimization,

semantics, and equivalence of SQL queries’. IEEE Transactions on Software Engineering,

vol. SE-11(4), pp.324-345. Available at:

https://ieeexplore.ieee.org/abstract/document/1702016 (Accessed 13 April 2019).

[25] Date, C.J. (1990). Relational Database Writings, 1985-1989, volume 1. Addison-Wesley.

[26] Oracle Corporation (2019). Oracle Database Online Documentation, 10g Release 2 (10.2).

Available at:

https://docs.oracle.com/cd/B19306_01/server.102/b14237/initparams035.htm#REFRN10

025 (Accessed 27 February 2019).

[27] Michel, D. and Microsoft Corporation (2019). What is Parameter Sniffing?. Available at:

https://blogs.technet.microsoft.com/mdegre/2011/11/06/what-is-parameter-sniffing/

(Accessed 27 February 2019).

[28] Colley, D., Stanier, C., and Asaduzzaman, M. (2020). ‘Investigating the Effects of Object-

Relational Impedance Mismatch on the Efficiency of Object-Relational Mapping

Frameworks’. Journal of Database Management, 31(4). Available at: https://www.igi-

global.com/article/investigating-the-effects-of-object-relational-impedance-mismatch-on-the-

efficiency-of-object-relational-mapping-frameworks/266402 (Accessed 18 January 2021)

[29] Colley, D., Stanier, C. and Asaduzzaman, M. (2018). ‘The Impact of Object-Relational

Mapping Frameworks on Relational Query Performance’. International Conference on

Computing, Electronics & Communications Engineering 2018 (ICCECE '18). Available

at: https://ieeexplore.ieee.org/dcument/8659222 (Accessed 18 January 2021).

[30] Karwin, B. (2017). SQL Antipatterns. Pragmatic Bookshelf.

[31] Meijer, E., Beckman, B. and Bierman, G. (2006). ‘LINQ: reconciling object, relations and

XML in the .NET framework’. Proceedings of the 2006 ACM SIGMOD International

Conference on Management of Data, pp. 706-706.

http://mo.co.za/open/dbpriv.pdf
https://www.tandfonline.com/doi/abs/10.1080/17517575.2018.1446102
https://www.ifi.uzh.ch/dam/jcr:002a7c16-46b4-497b-876f-ee5640c60a49/RHEEM.pdf
https://ieeexplore.ieee.org/abstract/document/5071809
http://doi.org/10.1109/ASEEZone1.2014.6820689
https://ieeexplore.ieee.org/abstract/document/1702016
https://docs.oracle.com/cd/B19306_01/server.102/b14237/initparams035.htm#REFRN10025
https://docs.oracle.com/cd/B19306_01/server.102/b14237/initparams035.htm#REFRN10025
https://blogs.technet.microsoft.com/mdegre/2011/11/06/what-is-parameter-sniffing/
https://www.igi-global.com/article/investigating-the-effects-of-object-relational-impedance-mismatch-on-the-efficiency-of-object-relational-mapping-frameworks/266402
https://www.igi-global.com/article/investigating-the-effects-of-object-relational-impedance-mismatch-on-the-efficiency-of-object-relational-mapping-frameworks/266402
https://www.igi-global.com/article/investigating-the-effects-of-object-relational-impedance-mismatch-on-the-efficiency-of-object-relational-mapping-frameworks/266402
https://ieeexplore.ieee.org/dcument/8659222

- 45 -

[32] Packer, A.N. (2001). Configuring and Tuning Databases on the Solaris Platform. Prentice

Hall PTR.

[33] Microsoft Corporation (2019). Specify Query Parameterization Behavior by Using Plan

Guides. Available at: https://docs.microsoft.com/en-us/sql/relational-

databases/performance/specify-query-parameterization-behavior-by-using-plan-

guides?view=sql-server-2017 (Accessed 27 February 2019).

[34] Trim, C. (2013). ‘The Art of Tokenization’. IBM Community (Language Processing).

Available at:

https://www.ibm.com/developerworks/community/blogs/nlp/entry/tokenization?lang=en

(Accessed 20 February 2019).

[35] Knuth, D. (1965). ‘On the translation of languages from left to right’. Information and

Control, vol. 8, pp 607-639. Available at:

https://www.sciencedirect.com/science/article/pii/S0019995865904262 (Accessed 06

February 2019).

[36] Fritchey, G. (2018). SQL Server Execution Plans. 3rd edn. Redgate Software Limited.

[37] Chaudhuri, S., Christensen, E., Graefe, G., Narasayya, V.R. and Zwilling, M.J. (1999).

‘Self-tuning technology in Microsoft SQL Server’. IEEE Data Engineering Bulletin, 22(2),

pp.20-26. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.654&rep=rep1&type=pdf#pa

ge=22 (Accessed 27 February 2019).

]38] Freedman, C. (2006). Scans vs. Seeks. Available at:

https://blogs.msdn.microsoft.com/craigfr/2006/06/26/scans-vs-seeks/ (Accessed 13 April

2019).

[39] Yu, C.T. and Meng, W. (1998). Principles of Database Query Processing for Advanced

Applications. Morgan Kaufmann.

[40] Delaney, K. (2012). Microsoft SQL Server Internals. O'Reilly, ch. 12.

[41] Microsoft Corporation (2015). SQL Server: Max Degree of Parallelism (MDOP) and

Affinity Mask. Available at

https://social.technet.microsoft.com/wiki/contents/articles/25550.sql-server-max-degree-of-

parallelism-mdop-and-affinity-mask.aspx (Accessed 26 February 2019).

[42] Haerder, T. and Reuter, A. (1983). ‘Principles of transaction-oriented database recovery’.

ACM Computing Surveys (CSUR), 15(4), pp.287-317. Available at:

https://www.cs.utexas.edu/users/dsb/cs386d/Readings/Recovery/Principles-of-

Recovery.pdf (Accessed 26 February 2019).

[43] Hameurlain, A. (2009). ‘Evolution of query optimization methods: from centralized

database systems to data grid systems’. International Conference on Database and Expert

Systems Applications, pp. 460-470. Springer.

[44] Waas, F. and Galindo-Legaria, C. (2000). ‘Counting, enumerating, and sampling of

execution plans in a cost-based query optimizer’. ACM SIGMOD Record, 29(2), pp. 499-

509. Available at:

https://people.inf.elte.hu/kiss/cikkek/039%20Sampling%20of%20execution%20plans%20(11

%20oldal).pdf (Accessed 27 February 2019).

[45] Kim, H., Ko, E., Young-Ho, J. and Lee, K. (2018). ‘Migration from RDBMS to Column-

Oriented NoSQL: Lessons Learned and Open Problems’. Proceedings of the 7th

International Conference on Emerging Databases, pp. 25-33. Available at:

https://doi.org/10.1007/978-981-10-6520-0_3 (Accessed 07 July 2019).

[46] Moden, J. (2007). Hidden RBAR: Triangular Joins. Available at:

http://www.sqlservercentral.com/articles/T-SQL/61539 (Accessed 18 August 2018).

[47] Chaudhuri, S. (1998). ‘An overview of query optimization in relational systems’.

Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, pp. 34-43. Available at: https://doi.org/10.1145/275487.275492

(Accessed 19 March 2019).

[48] Schiefer, K.B. and Valentin, G. (1999). ‘DB2 universal database performance tuning’.

IEEE Data Engineering Bulletin, 22(2), pp.12-19. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.30.7922&rep=rep1&type=pdf#p

age=14 (Accessed 27 February 2019).

https://docs.microsoft.com/en-us/sql/relational-databases/performance/specify-query-parameterization-behavior-by-using-plan-guides?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/performance/specify-query-parameterization-behavior-by-using-plan-guides?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/performance/specify-query-parameterization-behavior-by-using-plan-guides?view=sql-server-2017
https://www.ibm.com/developerworks/community/blogs/nlp/entry/tokenization?lang=en
https://www.sciencedirect.com/science/article/pii/S0019995865904262
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.654&rep=rep1&type=pdf#page=22
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.654&rep=rep1&type=pdf#page=22
https://blogs.msdn.microsoft.com/craigfr/2006/06/26/scans-vs-seeks/
https://social.technet.microsoft.com/wiki/contents/articles/25550.sql-server-max-degree-of-parallelism-mdop-and-affinity-mask.aspx
https://social.technet.microsoft.com/wiki/contents/articles/25550.sql-server-max-degree-of-parallelism-mdop-and-affinity-mask.aspx
https://www.cs.utexas.edu/users/dsb/cs386d/Readings/Recovery/Principles-of-Recovery.pdf
https://www.cs.utexas.edu/users/dsb/cs386d/Readings/Recovery/Principles-of-Recovery.pdf
https://people.inf.elte.hu/kiss/cikkek/039%20Sampling%20of%20execution%20plans%20(11%20oldal).pdf
https://people.inf.elte.hu/kiss/cikkek/039%20Sampling%20of%20execution%20plans%20(11%20oldal).pdf
https://doi.org/10.1007/978-981-10-6520-0_3
http://www.sqlservercentral.com/articles/T-SQL/61539
https://doi.org/10.1145/275487.275492
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.30.7922&rep=rep1&type=pdf#page=14
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.30.7922&rep=rep1&type=pdf#page=14

- 46 -

[49] Dageville, B., Das, D., Dias, K., Yagoub, K., Zait, M. and Ziauddin, M. (2004).

‘Automatic SQL tuning in Oracle 10g’. Proceedings of the 30th International Conference

on Very Large Data Bases, vol. 30, pp. 1098-1109. Available at:

http://www.vldb.org/conf/2004/IND4P2.pdf (Accessed 27 February 2019).

[50] Pinto, Y. (2009). ‘A framework for systematic database de-normalization’. Global Journal

of Computer Science and Technology, Goa University, pp.44-52. Available at:

http://irgu.unigoa.ac.in/drs/bitstream/handle/unigoa/2295/Global_J_Comput_Sci_Tech

nol_9_44.pdf?sequence=1 (Accessed 4 March 2019).

[51] Lee, H. (1995). ‘Justifying database normalization: a cost/benefit model’. Information

Processing and Management, 31(1), pp.59-67. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.5174&rep=rep1&type=pdf

(Accessed 4 March 2019).

[52] Gupta, A. and Mumick, I.S. (1995). ‘Maintenance of materialized views: Problems,

techniques, and applications’. IEEE Data Engineering Bulletin, 18(2), pp.3-18. Available

at: https://ieeexplore.ieee.org/document/380392 (Accessed 5 March 2019).

[53] Dragoni, N., Lanese, I., Larsen, S.T., Mazzara, M., Mustafin, R. and Safina, L. (2017).

‘Microservices: How to make your application scale’. International Andrei Ershov

Memorial Conference on Perspectives of System Informatics, pp. 95-104.

[54] Thönes, J. (2015). Microservices. IEEE Software, 32(1), pp.116. Available at:

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7030212 (Accessed 5 March 2019).

[55] Chen, A. N. (1999). Improving database performances in a changing environment with

uncertain and dynamic information demand: An intelligent database system approach.

Doctoral dissertation. University of Connecticut. Available at:

https://opencommons.uconn.edu/dissertations/AAI9942566/ (Accessed 02 February 2017).

[56] Terrizzano, I.G., Schwarz, P.M., Roth, M. and Colino, J.E. (2015). ‘Data Wrangling: The

Challenging Journey from the Wild to the Lake’. CIDR. Available at:

http://cidrdb.org/cidr2015/Papers/CIDR15_Paper2.pdf (Accessed 4 March 2019).

[57] Twitter Inc. (2014). Manhattan, our real-time, multi-tenant distributed database for

Twitter scale. Available at:

https://blog.twitter.com/engineering/en_us/a/2014/manhattan-our-real-time-multi-tenant-

distributed-database-for-twitter-scale.html (Accessed 6 March 2019).

[58] Garcia-Molina, H., Ullman, J.D. and Widom, J. (2000). Database System Implementation.

Prentice Hall. Ch. 5. Available at: https://www.csd.uoc.gr/~hy460/pdf/000.pdf (Accessed

02 February 2021).

[59] Navathe, S., Ceri, S., Wiederhold, G. and Dou, J. (1984). ‘Vertical partitioning algorithms

for database design’. ACM Transactions on Database Systems (TODS), 9(4), pp.680-710.

Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.8306&rep=rep1&type=pdf

(Accessed 5 March 2019).

[60] Microsoft Corporation (2018). Understanding Isolation Levels. Available at:

https://docs.microsoft.com/en-us/sql/connect/jdbc/understanding-isolation-

levels?view=sql-server-2017 (Accessed 5 March 2019).

[61] Sanders, G.L. and Shin, S. (2001). ‘Denormalization effects on performance of RDBMS’.

Proceedings of the 34th Annual Hawaii International Conference on System Sciences, p.

3013-3018. Available at:

https://www.computer.org/csdl/proceedings/hicss/2001/0981/03/09813013.pdf (Accessed 4

March 2019).

[62] Hahnke, J. (1996). ‘Analysis applications add value: Three primary classes of analysis tools

are: query and reporting, OLAP and data warehouse’. Application Development

Trends, vol. 3, pp.38-46.

[63] Kimball, R. and Ross, M. (2013). The Data Warehouse Toolkit: The definitive guide to

dimensional modeling. John Wiley & Sons.

[64] Inmon, W.H., Imhoff, C. and Battas, G. (1999). Building the Operational Data Store,

volume 8. John Wiley.

http://www.vldb.org/conf/2004/IND4P2.pdf
http://irgu.unigoa.ac.in/drs/bitstream/handle/unigoa/2295/Global_J_Comput_Sci_Technol_9_44.pdf?sequence=1
http://irgu.unigoa.ac.in/drs/bitstream/handle/unigoa/2295/Global_J_Comput_Sci_Technol_9_44.pdf?sequence=1
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.5174&rep=rep1&type=pdf
https://ieeexplore.ieee.org/document/380392
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7030212
https://opencommons.uconn.edu/dissertations/AAI9942566/
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper2.pdf
https://blog.twitter.com/engineering/en_us/a/2014/manhattan-our-real-time-multi-tenant-distributed-database-for-twitter-scale.html
https://blog.twitter.com/engineering/en_us/a/2014/manhattan-our-real-time-multi-tenant-distributed-database-for-twitter-scale.html
https://www.csd.uoc.gr/~hy460/pdf/000.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.8306&rep=rep1&type=pdf
https://docs.microsoft.com/en-us/sql/connect/jdbc/understanding-isolation-levels?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/connect/jdbc/understanding-isolation-levels?view=sql-server-2017
https://www.computer.org/csdl/proceedings/hicss/2001/0981/03/09813013.pdf

- 47 -

[65] Batini, C., Lenzerini, M. and Navathe, S.B. (1986). ‘A comparative analysis of

methodologies for database schema integration’. ACM Computing Surveys (CSUR), 18(4),

pp.323-364.

Chapter 3

[1] Glaser, B.G. (1998). Doing Grounded Theory: Issues and Discussions. Sociology Press.

[2] Shasha, D. (1996). ‘Tuning databases for high performance’. ACM Computing Surveys

(CSUR), 28(1), pp.113-115. Available at: https://dl-acm-

org.ezproxy.staffs.ac.uk/citation.cfm?id=234363 (Accessed 12 March 2019).

[3] Microsoft Corporation (2018). Best Practices for SQL Server in a SharePoint Server

Farm. Available at: https://docs.microsoft.com/en-us/sharepoint/administration/best-

practices-for-sql-server-in-a-sharepoint-server-farm (Accessed 14 March 2019).

[4] Ceri, S., Negri, M. and Pelagatti, G. (1982). ‘Horizontal data partitioning in database

design’. Proceedings of the 1982 ACM SIGMOD International Conference on Management

of Data, pp. 128-136.

[5] Antova, L., Jansen, T., Koch, C. and Olteanu, D. (2008). ‘Fast and simple relational

processing of uncertain data’. IEEE 24th International Conference on Data Engineering,

pp. 983-992. Available at: https://arxiv.org/pdf/0707.1644 (Accessed 13 March 2019).

[6] Cornell, D.W. and Yu, P.S. (1990). ‘An effective approach to vertical partitioning for

physical design of relational databases’. IEEE Transactions on Software Engineering,

16(2), pp.248-258. Available at: https://ieeexplore.ieee.org/abstract/document/44388

(Accessed 13 March 2019).

[7] Navathe, S., Ceri, S., Wiederhold, G. and Dou, J. (1984). ‘Vertical partitioning algorithms

for database design’. ACM Transactions on Database Systems (TODS), 9(4), pp.680-710.

[8] Rodríguez, L. and Li, X. (2011). ‘A dynamic vertical partitioning approach for distributed

database system’. 2011 IEEE International Conference on Systems Management and

Cybernetics’, pp. 1853-1858. Available at:

https://ieeexplore.ieee.org/abstract/document/6083941 (Accessed 12 March 2019).

[9] Microsoft Corporation, 2018. SET TRANSACTION ISOLATION LEVEL (Transact-

SQL). Available at: https://docs.microsoft.com/en-us/sql/t-sql/statements/set-

transaction-isolation-level-transact-sql?view=sql-server-2017 (Accessed 13 March 2019).

[10] Nehme, R. and Bruno, N. (2011). ‘Automated partitioning design in parallel database

systems’. Proceedings of the 2011 ACM SIGMOD International Conference on

Management of Data, pp. 1137-1148. Available at:

https://cs.brown.edu/courses/cs227/archives/2012/papers/partitioning/p1137-nehme.pdf

(Accessed 14 March 2019).

[11] Sundar, N. (2018). Implementation of Sliding Window Partitioning in SQL Server to

Purge Data. Available at: https://www.mssqltips.com/sqlservertip/5296/implementation-

of-sliding-window-partitioning-in-sql-server-to-purge-data/ (Accessed 14 March 2019).

[12] Martyn, T. (2004). ‘Reconsidering multi-dimensional schemas’. ACM Sigmod Record,

33(1), pp.83-88. . Available at:

http://sigmodrecord.org/publications/sigmodRecord/0403/B6.Martyn_6page.pdf (Accessed

14 March 2019).

[13] Lee, H. (1995). ‘Justifying database normalization: a cost/benefit model’. Information

Processing and Management, 31(1), pp.59-67. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.5174&rep=rep1&type=pdf

(Accessed 14 March 2019).

[14] Pinto, Y. (2009). ‘A framework for systematic database de-normalization’. Global Journal

of Computer Science and Technology, pp. 44-53. Available at:

http://irgu.unigoa.ac.in/drs/bitstream/handle/unigoa/2295/Global_J_Comput_Sci_Tech

nol_9_44.pdf?sequence=1 (Accessed 14 March 2019).

[15] Sanders, G.L. and Shin, S. (2001). ‘Denormalization effects on performance of RDBMS’.

Proceedings of the 34th Annual Hawaii International Conference on System Sciences, p.

https://dl-acm-org.ezproxy.staffs.ac.uk/citation.cfm?id=234363
https://dl-acm-org.ezproxy.staffs.ac.uk/citation.cfm?id=234363
https://docs.microsoft.com/en-us/sharepoint/administration/best-practices-for-sql-server-in-a-sharepoint-server-farm
https://docs.microsoft.com/en-us/sharepoint/administration/best-practices-for-sql-server-in-a-sharepoint-server-farm
https://arxiv.org/pdf/0707.1644
https://ieeexplore.ieee.org/abstract/document/44388
https://ieeexplore.ieee.org/abstract/document/6083941
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-transaction-isolation-level-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-transaction-isolation-level-transact-sql?view=sql-server-2017
https://cs.brown.edu/courses/cs227/archives/2012/papers/partitioning/p1137-nehme.pdf
https://www.mssqltips.com/sqlservertip/5296/implementation-of-sliding-window-partitioning-in-sql-server-to-purge-data/
https://www.mssqltips.com/sqlservertip/5296/implementation-of-sliding-window-partitioning-in-sql-server-to-purge-data/
http://sigmodrecord.org/publications/sigmodRecord/0403/B6.Martyn_6page.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.5174&rep=rep1&type=pdf
http://irgu.unigoa.ac.in/drs/bitstream/handle/unigoa/2295/Global_J_Comput_Sci_Technol_9_44.pdf?sequence=1
http://irgu.unigoa.ac.in/drs/bitstream/handle/unigoa/2295/Global_J_Comput_Sci_Technol_9_44.pdf?sequence=1

- 48 -

3013-3018. Available at:

https://www.computer.org/csdl/proceedings/hicss/2001/0981/03/09813013.pdf (Accessed 4

March 2019).

[16] Al-Barak, M. and Bahsoon, R. (2016). ‘Database design debts through examining schema

evolution’. IEEE 8th International Workshop on Managing Technical Debt (MTD), pp.

17-23. Available at: https://ieeexplore.ieee.org/abstract/document/7776448 (Accessed 14

March 2019).

[17] Date, C. (2012). Database Design and Relational Theory: Normal Forms and All That

Jazz. O'Reilly.

[18] International Standards Organisation (2016). ISO/IEC 9075-1:2016 - Information

Technology - Database languages - SQL - Part 1: Framework (SQL/Framework).

Available at: https://www.iso.org/standard/63555.html (Accessed 14 August 2019).

[19] Karwin, B. (2017). SQL Antipatterns. Pragmatic Bookshelf.

[20] Kuznetsov, A. (2010). ‘Speeding up your queries with index covering’, in Nielson, P. et al.

(eds), SQL Server MVP Deep Dives, volume 1. Manning Publications.

[21] Zaniolo, C. (1984). ‘Database relations with null values’. Journal of Computer and System

Sciences, 28(1), pp.142-166. Available at:

https://www.sciencedirect.com/science/article/pii/0022000084900801/pdf?md5=d16ed6105

7e90ca0177ace7bbb61f1d6&pid=1-s2.0-0022000084900801-main.pdf&_valck=1 (Accessed 14

March 2019).

[22] Bayer, R. (1972). ‘Symmetric binary B-trees: Data structure and maintenance algorithms’.

Acta Informatica, 1(4), pp.290-306. Available at:

https://link.springer.com/article/10.1007/BF00289509 (Accessed 10 January 2019).

[23] Tripp, K. (2007). The clustered index debate continues.. Available at:

https://www.sqlskills.com/blogs/kimberly/the-clustered-index-debate-continues/ (Accessed

14 March 2019).

[24] Graefe, G. (2011). ‘Modern B-tree techniques’. Foundations and Trends® in Databases,

3(4), pp.203-402. Available at:

https://www.nowpublishers.com/article/DownloadSummary/DBS-028 (Accessed 07 July

2019).

[25] Ozar, B. (2018). Index Tuning Week: How Many Indexes Are Too Many?. Available at:

https://www.brentozar.com/archive/2018/10/index-tuning-week-how-many-indexes-are-

too-many/ (Accessed 14 March 2019).

[26] Catterall, R. (2010). DB2 Indexes and Query Maintenance, Part 1. Available at:

https://www.ibmbigdatahub.com/blog/db2-indexes-and-query-performance-part-1

(Accessed 20 August 2019).

[27] Lu, H., Ng, Y.Y. and Tian, Z. (2000). ‘T-tree or B-tree: Main memory database index

structure revisited’. Proceedings of the 11th Australasian Database Conference (ADC

2000), pp. 65-73.

[28] Cooper, B.F., Sample, N., Franklin, M.J., Hjaltason, G.R. and Shadmon, M. (2001). ‘A

fast index for semistructured data’. Proceedings of the 27th VLDB Conference, vol. 1, pp.

341-350). Available at: http://www.vldb.org/conf/2001/P341.pdf (Accessed 11 March

2018).

[29] Guttman, A. (1984). ‘R-trees: a dynamic index structure for spatial searching’, 14(2), pp.

47-57. Available at: https://apps.dtic.mil/dtic/tr/fulltext/u2/a168531.pdf (Accessed 18

February 2019).

[30] Trellis, T. (1987). ‘Index structures in computer programming’. John Wiley & Sons.

[31] Fuhry, B., Bahmani, R., Brasser, F., Hahn, F., Kerschbaum, F. and Sadeghi, A.R. (2017).

‘HardIDX: Practical and secure index with SGX’. IFIP Annual Conference on Data and

Applications Security and Privacy, pp. 386-408. Available at:

https://link.springer.com/chapter/10.1007/978-3-319-61176-1_22 (Accessed 28 December

2017).

[32] Dziedzic, A., Wang, J., Das, S., Ding, B., Narasayya, V.R. and Syamala, M. (2018).

‘Columnstore and B+ tree-Are Hybrid Physical Designs Important?’. Proceedings of the

2018 International Conference on Management of Data, pp. 177-190. Available at:

https://dl.acm.org/doi/abs/10.1145/3183713.3190660 (Accessed 20 December 2018).

https://www.computer.org/csdl/proceedings/hicss/2001/0981/03/09813013.pdf
https://ieeexplore.ieee.org/abstract/document/7776448
https://www.iso.org/standard/63555.html
https://www.sciencedirect.com/science/article/pii/0022000084900801/pdf?md5=d16ed61057e90ca0177ace7bbb61f1d6&pid=1-s2.0-0022000084900801-main.pdf&_valck=1
https://www.sciencedirect.com/science/article/pii/0022000084900801/pdf?md5=d16ed61057e90ca0177ace7bbb61f1d6&pid=1-s2.0-0022000084900801-main.pdf&_valck=1
https://link.springer.com/article/10.1007/BF00289509
https://www.sqlskills.com/blogs/kimberly/the-clustered-index-debate-continues/
https://www.nowpublishers.com/article/DownloadSummary/DBS-028
https://www.brentozar.com/archive/2018/10/index-tuning-week-how-many-indexes-are-too-many/
https://www.brentozar.com/archive/2018/10/index-tuning-week-how-many-indexes-are-too-many/
https://www.ibmbigdatahub.com/blog/db2-indexes-and-query-performance-part-1
http://www.vldb.org/conf/2001/P341.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a168531.pdf
https://link.springer.com/chapter/10.1007/978-3-319-61176-1_22
https://dl.acm.org/doi/abs/10.1145/3183713.3190660

- 49 -

[33] Hanushevsky, A. and Nowak, M. (1999). ‘Pursuit of a scalable high performance multi-

petabyte database’. 16th IEEE Symposium on Mass Storage Systems in cooperation with

the 7th NASA Goddard Conference on Mass Storage Systems and Technologies, pp. 169-

175. Available at:

https://www.computer.org/csdl/proceedings/mass/1999/0204/00/00830026.pdf (Accessed

14 September 2019).

[34] Morris, B. (2013). A shared database is still an anti-pattern, no matter what the

justification. Available at: https://www.ben-morris.com/a-shared-database-is-still-an-anti-

pattern-no-matter-what-the-justification (Accessed 30 November 2018).

[35] Microsoft Corporation (2017). Hints (Transact-SQL). Available at:

https://docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-table?view=sql-

server-2017 (Accessed 13 March 2019).

[36] Mohan, C., Pirahesh, H., Tang, W.G. and Wang, Y. (1994). ‘Parallelism in relational

database management systems’. IBM Systems Journal, 33(2), pp.349-371. Available at:

https://ieeexplore.ieee.org/abstract/document/5387317 (Accessed 10 March 2019).

[37] Microsoft Corporation (2018). Columnstore indexes: Overview. Available at:

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-

overview?view=sql-server-2017 (Accessed 12 March 2019).

[38] McGehee, B. (2011). Do You Enable Lock Pages In Memory?. Available at:

https://bradmcgehee.com/2011/03/10/do-you-enable-lock-pages-in-memory/ (Accessed 08

April 2019).

[39] Codd, E. (1970). ‘A relational model of data for large shared data banks’.

Communications of the ACM, 13 (6), pp. 377-387. Available at:

https://doi.org/10.1145/362384.362685 (Accessed 10 October 2016).

[40] Oracle Corporation (2019). Database SQL Tuning Guide: SQL Processing. Available at:

https://docs.oracle.com/database/121/TGSQL/tgsql_sqlproc.htm#TGSQL175 (Accessed

06 February 2019).

[41] Khurana, D., Koli, A., Khatter, K. and Singh, S. (2017). Natural Language Processing:

State of The Art, Current Trends and Challenges. Preprint. arXiv. Available at:

https://arxiv.org/abs/1708.05148 (Accessed 10 December 2017).

[42] Sun, S., Luo, C. and Chen, J. (2017). ‘A review of natural language processing techniques

for opinion mining systems’. Information Fusion, vol. 36, pp.10-25.

[43] Zelle, J.M. and Mooney, R.J. (1996). ‘Learning to parse database queries using inductive

logic programming’. Proceedings of the National Conference on Artificial Intelligence, pp.

1050-1055. Available at: http://www.aaai.org/Papers/AAAI/1996/AAAI96-156.pdf

(Accessed 15 February 2019).

[44] Pardede, E., Rahayu, J.W. and Taniar, D. (2003). ‘New SQL standard for object-relational

database applications’. Proceedings of the 33rd European Solid-State Device Research -

ESSDERC'03 , pp. 191-203.

[45] Stonebraker, M., Brown, P. and Moore, D. (1999). Object-Relational DBMSs: Tracking the

Next Great Wave. 2nd Edn. Morgan Kaufmann.

[46] Feuerstein, S. and Pribyl, B. (1997). Oracle PL/SQL Programming. 2nd edn. O'Reilly.

[47] Microsoft Corporation (2019). Transact-SQL Reference (Database Engine). Available at:

https://docs.microsoft.com/en-us/sql/t-sql/language-reference?view=sql-server-2017

(Accessed 06 February 2019).

[48] Pitts, A. M. (2006). ‘Alpha-structural recursion and induction’. Journal of the ACM,

53(3), pp. 459-506.

[49] Apache Software Foundation. (2019). Apache Lucene. Available at:

https://lucene.apache.org/ (Accessed 05 February 2019).

[50] Nelson, P. and Search Technologies (2019). Advanced Query Parsing Techniques. [Online

video]. Available at: https://www.youtube.com/watch?v=abbBDLyFyS4 (Accessed 05

February 2019).

[51] Covington, M.A. (2001). ‘A fundamental algorithm for dependency parsing’. Proceedings

of the 39th Annual ACM Southeast Conference, pp. 95-102. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.7335&rep=rep1&type=pdf

(Accessed 05 February 2019).

https://www.computer.org/csdl/proceedings/mass/1999/0204/00/00830026.pdf
https://www.ben-morris.com/a-shared-database-is-still-an-anti-pattern-no-matter-what-the-justification
https://www.ben-morris.com/a-shared-database-is-still-an-anti-pattern-no-matter-what-the-justification
https://docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-table?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-table?view=sql-server-2017
https://ieeexplore.ieee.org/abstract/document/5387317
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-2017
https://bradmcgehee.com/2011/03/10/do-you-enable-lock-pages-in-memory/
https://doi.org/10.1145/362384.362685
https://docs.oracle.com/database/121/TGSQL/tgsql_sqlproc.htm#TGSQL175
https://arxiv.org/abs/1708.05148
http://www.aaai.org/Papers/AAAI/1996/AAAI96-156.pdf
https://docs.microsoft.com/en-us/sql/t-sql/language-reference?view=sql-server-2017
https://lucene.apache.org/
https://www.youtube.com/watch?v=abbBDLyFyS4
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.7335&rep=rep1&type=pdf

- 50 -

[52] Chomsky, N. (1956). ‘Three models for the description of language’. IRE Transactions on

Information Theory, 2(3), pp.113-124. Archived version available at:

https://web.archive.org/web/20100919021754/http://chomsky.info/articles/195609--.pdf

(Accessed 06 February 2019).

[53] Jackendoff, R. (1977). ‘X syntax: A study of phrase structure’. Linguistic Inquiry

Monographs, vol. 2, pp.1-249.

[54] Pachev, S. (2007). Understanding MySQL Internals. O'Reilly, ch. 9.

[55] Oracle Corporation (2018). MySQL-Server: sql/sql_lex.cc. Online, GitHub repository.

Available at: https://github.com/mysql/mysql-server/blob/8.0/sql/sql_lex.cc (Accessed 06

February 2019).

[56] Estes, W. (2019). Flex. Online, GitHub repository. Available at:

https://github.com/westes/flex (Accessed 02 December 2019).

[57] Johnson, S.C. (1975). Yacc: Yet another compiler-compiler, vol. 32. Murray Hill and Bell

Laboratories. Available at: https://www.isi.edu/~pedro/Teaching/CSCI565-

Fall15/Materials/Yacc.pdf (Accessed 06 February 2019).

[58] Free Software Foundation (2014). GNU Operating System: GNU Bison. Available at:

https://www.gnu.org/software/bison/ (Accessed 08 February 2019).

[59] DeRemer, F.L. (1969). Practical translators for LR (k) languages. Doctoral dissertation.

Massachusetts Institute of Technology. Available at:

https://core.ac.uk/download/pdf/81140495.pdf (Accessed 06 February 2019).

[60] Knuth, D. (1965). ‘On the translation of languages from left to right’. Information and

Control, vol. 8, pp 607-639. Available at:

https://www.sciencedirect.com/science/article/pii/S0019995865904262 (Accessed 09

February 2019).

[61] W3C (World Wide Web Consortium) (2013). SPARQL 1.1 Overview. Available at:

https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/ (Accessed 15 February

2019).

[62] Jie, N. (2017). Search engine traversal for data structures. Available at:

https://www.cam.ac.uk/~/jiend/search-engine-traversal-data-structures/ (Accessed 12

February 2019).

[63] Mosharraf, M. and Taghiyareh, F. (2016). ‘Federated Search Engine for Open Educational

Linked Data’. Bulletin of the IEEE Technical Committee on Learning Technology, 18(4),

p.6. Available at: http://tc.computer.org/tclt/wp-

content/uploads/sites/5/2017/04/Mosharraf.pdf (Accessed 15 February 2019).

[64] Eldawy, A., Sabek, I., Elganainy, M., Bakeer, A., Abdelmotaleb, A., and Mokbel, M.F.

(2017). ‘Sphinx: Empowering impala for efficient execution of SQL queries on big spatial

data’. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 10411 LNCS, pp. 65-83. Available at:

https://link.springer.com/chapter/10.1007/978-3-319-64367-0_4 (Accessed 19 February

2019).

[65] Ge, W., He, G. and Liu, X. (2018). ‘Business-oriented customized big data query system

and its SQL parser design and implementation’. MATEC Web of Conferences, vol. 232,

p.1004. Available at: https://www.matec-

conferences.org/articles/matecconf/pdf/2018/91/matecconf_eitce2018_01004.pdf

(Accessed 15 February 2019).

[66] Li, C. and Gu, J. (2017). ‘A SQL transformation model of MongoDB based on ANTLR’.

Journal of Northwestern Polytechnical University, 35(1), pp.143-147.

[67] Cao, D. and Bai, D., (2010). ‘Design and implementation for SQL parser based on

ANTLR’. 2nd International Conference on Computer Engineering and Technology

(ICCET), vol. 4, pp. 274-276. Available at:

https://ieeexplore.ieee.org/abstract/document/5485593 (Accessed 15 February 2019).

[68] Gudu Software (2019). SQL Parse, Analyze, Transform and Format, All in One.

Available at: http://www.sqlparser.com/index.php (Accessed 15 February 2019).

[69] Thenmozhi, D. and Aravindan, C. (2016). ‘Paraphrase identification by using clause-based

similarity features and machine translation metrics’. The Computer Journal, 59(9),

https://web.archive.org/web/20100919021754/http:/chomsky.info/articles/195609--.pdf
https://github.com/mysql/mysql-server/blob/8.0/sql/sql_lex.cc
https://github.com/westes/flex
https://www.isi.edu/~pedro/Teaching/CSCI565-Fall15/Materials/Yacc.pdf
https://www.isi.edu/~pedro/Teaching/CSCI565-Fall15/Materials/Yacc.pdf
https://www.gnu.org/software/bison/
https://core.ac.uk/download/pdf/81140495.pdf
https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
https://www.cam.ac.uk/~/jiend/search-engine-traversal-data-structures/
http://tc.computer.org/tclt/wp-content/uploads/sites/5/2017/04/Mosharraf.pdf
http://tc.computer.org/tclt/wp-content/uploads/sites/5/2017/04/Mosharraf.pdf
https://link.springer.com/chapter/10.1007/978-3-319-64367-0_4
https://www.matec-conferences.org/articles/matecconf/pdf/2018/91/matecconf_eitce2018_01004.pdf
https://www.matec-conferences.org/articles/matecconf/pdf/2018/91/matecconf_eitce2018_01004.pdf
https://ieeexplore.ieee.org/abstract/document/5485593
http://www.sqlparser.com/index.php

- 51 -

pp.1289-1302. Available at: https://ieeexplore.ieee.org/abstract/document/8213052

(Accessed 14 February 2019).

[70] Özsoyoğlu, G., Matos, V. and Özsoyoğlu, M. (1989). ‘Query processing techniques in the

summary-table-by-example database query language’. ACM Transactions on Database

Systems (TODS), 14(4), pp.526-573.

[71] Chamberlin, D.D., Astrahan, M.M., King, W.F., Lorie, R.A. et al. (1981). ‘Support for

repetitive transactions and ad hoc queries in System R’. ACM Transactions on Database

Systems (TODS), 6(1), pp.70-94.

[72] Microsoft Corporation (2019). Optimize for Ad-Hoc Workloads Server Configuration

Option. Available at: https://docs.microsoft.com/en-us/sql/database-engine/configure-

windows/optimize-for-ad-hoc-workloads-server-configuration-option?view=sql-server-2017

(Accessed 19 February 2019).

[73] Li, J., Luong, M.-T., Jurafsky, D., and Hovy, E. (2015). ‘When are tree structures

necessary for deep learning of representations?’. Conference on Empirical Methods in

Natural Language Processing, pp. 2304-2314. Available at:

http://aclweb.org/anthology/D15-1278 (Accessed 15 February 2019).

[74] Fagin, R., Kimelfield, B., Reiss, F. and Vansummeren, S. (2016). ‘Declarative Cleaning of

Inconsistencies in Information Extraction’. ACM Transactions on Database Systems

(TODS), 41(1). Available at:

https://dl.acm.org/citation.cfm?id=2877202&dl=ACM&coll=DL (Accessed 20 February

2019).

[75] Trim, C. (2013). ‘The Art of Tokenization’. IBM Community (Language Processing).

Available at:

https://www.ibm.com/developerworks/community/blogs/nlp/entry/tokenization?lang=en

(Accessed 20 February 2019).

[76] Webster, J.J. and Kit, C. (1992). ‘Tokenization as the initial phase in NLP’. 15th

International Conference on Computational Linguistics, volume 4. Available at:

https://www.aclweb.org/anthology/C92-4173.pdf (Accessed 10 May 2019).

[77] Carpenter, B. (2005). The Logic of Typed Feature Structures: With Applications to

Unification Grammars, Logic Programs and Constraint Resolution. Cambridge University

Press.

[78] Ireland, C., Bowers, D., Newton, M. and Waugh, K. (2009). ‘A classification of object-

relational impedance mismatch’. First International Conference on Advances in

Databases, Knowledge, and Data Applications, pp. 36-43. Available at:

https://ieeexplore.ieee.org/abstract/document/5071809 (Accessed 18 November 2020).

[79] Phillippi, S. (2005). ‘Model-driven generation and testing of object-relational mappings’.

Journal of Systems and Software, 77(2), pp. 193-207. Available at:

https://doi.org/10.1016/j.jss.2004.07.252 (Accessed 04 November 2018).

[80] Chen, A. N. (1999). Improving database performances in a changing environment with

uncertain and dynamic information demand: An intelligent database system approach.

Doctoral dissertation. University of Connecticut. Available at:

https://opencommons.uconn.edu/dissertations/AAI9942566/ (Accessed 18 January 2020).

[81] Colley, D., Stanier, C. and Asaduzzaman, M. (2018). ‘The Impact of Object-Relational

Mapping Frameworks on Relational Query Performance’. International Conference on

Computing, Electronics & Communications Engineering 2018 (ICCECE '18). Available

at: https://ieeexplore.ieee.org/document/8659222 (Accessed 18 January 2021).

[82] Colley, D. and Stanier, C. (2017). Identifying New Directions in Database Performance

Tuning. Procedia Computer Science, vol. 121, pp.260-265. Available at:

https://www.sciencedirect.com/science/article/pii/S1877050917322275 (Accessed 18

January 2021).

[83] Colley, D., Stanier, C., and Asaduzzaman, M. (2020). ‘Investigating the Effects of Object-

Relational Impedance Mismatch on the Efficiency of Object-Relational Mapping

Frameworks’. Journal of Database Management, 31(4). Available at: https://www.igi-

global.com/article/investigating-the-effects-of-object-relational-impedance-mismatch-on-the-

efficiency-of-object-relational-mapping-frameworks/266402 (Accessed 18 January 2021).

https://ieeexplore.ieee.org/abstract/document/8213052
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/optimize-for-ad-hoc-workloads-server-configuration-option?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/optimize-for-ad-hoc-workloads-server-configuration-option?view=sql-server-2017
http://aclweb.org/anthology/D15-1278
https://dl.acm.org/citation.cfm?id=2877202&dl=ACM&coll=DL
https://www.ibm.com/developerworks/community/blogs/nlp/entry/tokenization?lang=en
https://www.aclweb.org/anthology/C92-4173.pdf
https://ieeexplore.ieee.org/abstract/document/5071809
https://doi.org/10.1016/j.jss.2004.07.252
https://opencommons.uconn.edu/dissertations/AAI9942566/
https://www.sciencedirect.com/science/article/pii/S1877050917322275
https://www.igi-global.com/article/investigating-the-effects-of-object-relational-impedance-mismatch-on-the-efficiency-of-object-relational-mapping-frameworks/266402
https://www.igi-global.com/article/investigating-the-effects-of-object-relational-impedance-mismatch-on-the-efficiency-of-object-relational-mapping-frameworks/266402
https://www.igi-global.com/article/investigating-the-effects-of-object-relational-impedance-mismatch-on-the-efficiency-of-object-relational-mapping-frameworks/266402

- 52 -

[84] Chen, T., Shang, W., Zhen, M.J., Hassan, A.E., Nasser, M. and Flora, P. (2014).

‘Detecting performance anti-patterns for applications developed using object-relational

mapping’. Proceedings of the 36th International Conference on Software Engineering, pp.

1001-1012. Available at: https://doi.org/10.1145/2568225.2568259 (Accessed 16 January

2020).

[85] Microsoft Corporation, Narumoto, M., Bennage, C. and Wasson, M. (2017). Extraneous

Fetching Antipattern. Available at: https://docs.microsoft.com/en-

us/azure/architecture/antipatterns/extraneousfetching (Accessed 10 January 2020).

[86] Dennis, A., Wixom, B.H. and Tegarden, D. (2015). Systems analysis and design: An

object-oriented approach with UML. John Wiley & Sons.

[87] Kay, A.C. (1996). ‘The early history of Smalltalk’. History of Programming Languages,

vol. 2, pp. 511-598. Available at:: https://doi.org/10.1145/234286.1057828 (Accessed 20

February 2020).

[88] Suppes, P. (1960). Axiomatic set theory. Courier Corporation.

[89] Kim, H., Ko, E., Jeon, Y. and Lee, K. (2018). ‘Migration from RDBMS to Column-

Oriented NoSQL: Lessons Learned and Open Problems’. Proceedings of the 7th

International Conference on Emerging Databases, pp. 25-33. Available at:

https://doi.org/10.1007/978-981-10-6520-0_3 (Accessed 19 February 2020).

[90] Moden, J. (2007). Hidden RBAR: Triangular joins. Available at:

http://www.sqlservercentral.com/articles/T-SQL/61539 (Accessed 18 February 2021).

[91] Cheung, A., Madden, S. & Solar-Lezama, A. (2016). ‘Sloth: Being lazy is a virtue (when

issuing database queries)’. ACM Transactions on Database Systems (TODS), 41(2), p.8.

[92] Fritchey, G. (2018). SQL Server 2017 Query Performance Tuning. Apress, Ch. 7.

[93] Date, C. J. (1990). Relational Database Writings, 1985-1989, volume 1. Addison-Wesley.

[94] Microsoft Corporation (2009). Getting Started with Entity Framework 6 Code First using

MVC 5. Available at: https://docs.microsoft.com/en-

us/aspnet/mvc/overview/gettingstarted/getting-started-with-ef-using-mvc/creating-an-

entity-framework-data-model-for-an-asp-net-mvc-application (Accessed 10 January 2021).

[95] Małysiak-Mrozek, B., Mazurkiewicz, H. and Mrozek, D. (2019). ‘Incorporating Fuzzy Logic

in Object-Relational Mapping Layer for Flexible Medical Screenings’. Intelligent Methods

and Big Data in Industrial Applications, pp. 213-233.

[96] Raghu, R. and Varma, N.S. (2018). ‘JSON as ORM Mapping Database Layer for the

SaaS-Based Multi-tenant Application’ Recent Findings in Intelligent Computing

Techniques pp. 295-306. Available at: https://link.springer.com/chapter/10.1007/978-981-

10-8633-5_30 (Accessed 15 March 2019).

[97] Wikipedia, n.d. List of ORM mapping frameworks. Available at:

https://en.wikipedia.org/wiki/List_of_object-relational_mapping_software (Accessed 15

March 2019).

[98] Yannakakis, M. (1990). ‘Graph-theoretic methods in database theory’. Proceedings of the

9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp.

230-242. Available at:

https://www.researchgate.net/profile/Mihalis_Yannakakis/publication/221559463_Graph-

Theoretic_Methods_in_Database_Theory/links/57adf07e08ae15c76cb34ccf.pdf (Accessed

19 March 2019).

[99] Mihalcea, R. and Radev, D. (2011). Graph-based natural language processing and

information retrieval. Cambridge University Press.

[100] Alqaryouti, O., Khwileh, H., Farouk, T. A., Nabhan, A. R. and Shaalan, K. (2018).

Graph-based keyword extraction. Available at:

https://www.researchgate.net/publication/321150259_Graph-Based_Keyword_Extraction

(Accessed 20 March 2019).

[101] Matsuo, Y. and Ishizuka, M. (2004). International Journal on Artificial Intelligence

Tools, 13(01), pp.157-169. Available at:

https://www.aaai.org/Papers/FLAIRS/2003/Flairs03-076.pdf (Accessed 25 February

2021).

[102] Robinson, I., Webber, J. and Eifrem, E. (2013). Graph databases. 2nd edn. O'Reilly.

https://doi.org/10.1145/2568225.2568259
https://docs.microsoft.com/en-us/azure/architecture/antipatterns/extraneousfetching
https://docs.microsoft.com/en-us/azure/architecture/antipatterns/extraneousfetching
https://doi.org/10.1145/234286.1057828
https://doi.org/10.1007/978-981-10-6520-0_3
http://www.sqlservercentral.com/articles/T-SQL/61539
https://docs.microsoft.com/en-us/aspnet/mvc/overview/gettingstarted/getting-started-with-ef-using-mvc/creating-an-entity-framework-data-model-for-an-asp-net-mvc-application
https://docs.microsoft.com/en-us/aspnet/mvc/overview/gettingstarted/getting-started-with-ef-using-mvc/creating-an-entity-framework-data-model-for-an-asp-net-mvc-application
https://docs.microsoft.com/en-us/aspnet/mvc/overview/gettingstarted/getting-started-with-ef-using-mvc/creating-an-entity-framework-data-model-for-an-asp-net-mvc-application
https://link.springer.com/chapter/10.1007/978-981-10-8633-5_30
https://link.springer.com/chapter/10.1007/978-981-10-8633-5_30
https://en.wikipedia.org/wiki/List_of_object-relational_mapping_software
https://www.researchgate.net/profile/Mihalis_Yannakakis/publication/221559463_Graph-Theoretic_Methods_in_Database_Theory/links/57adf07e08ae15c76cb34ccf.pdf
https://www.researchgate.net/profile/Mihalis_Yannakakis/publication/221559463_Graph-Theoretic_Methods_in_Database_Theory/links/57adf07e08ae15c76cb34ccf.pdf
https://www.researchgate.net/publication/321150259_Graph-Based_Keyword_Extraction
https://www.aaai.org/Papers/FLAIRS/2003/Flairs03-076.pdf

- 53 -

[103] Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y. and Wilkins, D. (2010). ‘A

comparison of a graph database and a relational database: a data provenance perspective’.

Proceedings of the 48th Annual Southeast Regional Conference, p. 42. Available at:

https://john.cs.olemiss.edu/~ychen/publications/conference/vicknair_acmse10.pdf

(Accessed 19 March 2019).

[104] Harary, F. (1962). ‘The determinant of the adjacency matrix of a graph’. Siam Review,

4(3), pp.202-210. Available at: https://epubs.siam.org/doi/abs/10.1137/1004057

(Accessed 21 May 2020).

[105] Gallo, G., Longo, G., Pallottino, S. and Nguyen, S. (1993). ‘Directed hypergraphs and

applications’. Discrete Applied Mathematics, 42(2-3), pp.177-201.

[106] Reutter, J.L., Romero, M. and Vardi, M.Y. (2017). ‘Regular queries on graph databases’.

Theory of Computing Systems, 61(1), pp.31-83. Available at:

http://repositorio.uchile.cl/bitstream/handle/2250/148293/Regular-Queries-on-Graph-

Databases.pdf?sequence=1 (Accessed 19 March 2019).

[107] AlgoWiki (2018). Transitive closure of a directed graph. Available at: https://algowiki-

project.org/en/Transitive_closure_of_a_directed_graph (Accessed 19 March 2019).

[108] Daniel, G., Sunyé, G. and Cabot, J. (2016). ‘UML to Graph DB: mapping conceptual

schemas to graph databases’. International Conference on Conceptual Modeling, pp. 430-

444. Available at: https://hal.archives-ouvertes.fr/hal-01344015/document (Accessed 20

March 2019).

[109] Zheng, W., Zou, L., Lian, X., Wang, D. and Zhao, D. (2015). ‘Efficient graph similarity

search over large graph databases’. IEEE Transactions on Knowledge and Data

Engineering, 27(4), pp.964-978. Available at:

https://faculty.utrgv.edu/xiang.lian/papers/TKDE15-weiguo.pdf (Accessed 19 March

2019).

[110] Nawaz, M., Khan, S., Qureshi, R. and Yan, H. (2019). ‘Clustering based one-to-one

hypergraph matching with a large number of feature points’. Signal Processing: Image

Communication. Available at:

https://www.sciencedirect.com/science/article/abs/pii/S0923596518306155 (Accessed 19

March 2019).

[111] Emmert-Streib, F., Dehmer, M. and Shi, Y. (2016). ‘Fifty years of graph matching,

network alignment and network comparison’. Information Sciences, vol. 346, pp.180-197.

[112] Vento, M. (2015). ‘A long trip in the charming world of graphs for pattern recognition.

Pattern Recognition’, 48(2), pp.291-301.

[113] Perchant, A. and Bloch, I. (2002). ‘Fuzzy morphisms between graphs’. Fuzzy Sets and

Systems, 128(2), pp.149-168. Available at: https://perso.telecom-

paristech.fr/bloch/papers/FSS-Aymeric.pdf (Accessed 19 March 2019).

Chapter 4

[1] Chen, A. N. (1999). Improving database performances in a changing environment with

uncertain and dynamic information demand: An intelligent database system approach.

Doctoral dissertation. University of Connecticut. Available at:

https://opencommons.uconn.edu/dissertations/AAI9942566/ (Accessed 20 February 2021).

[2] Colley, D., Stanier, C. and Asaduzzaman, M. (2018). ‘The Impact of Object-Relational

Mapping Frameworks on Relational Query Performance’. International Conference on

Computing, Electronics & Communications Engineering 2018 (ICCECE '18). Available

at: https://ieeexplore.ieee.org/document/8659222 (Accessed 18 Jan. 2021).

[3] Colley, D., Stanier, C., and Asaduzzaman, M. (2020). ‘Investigating the Effects of Object-

Relational Impedance Mismatch on the Efficiency of Object-Relational Mapping

Frameworks’. Journal of Database Management, 31(4). Available at: https://www.igi-

global.com/article/investigating-the-effects-of-object-relational-impedance-mismatch-on-the-

efficiency-of-object-relational-mapping-frameworks/266402 (Accessed 18 January 2021).

https://john.cs.olemiss.edu/~ychen/publications/conference/vicknair_acmse10.pdf
https://epubs.siam.org/doi/abs/10.1137/1004057
http://repositorio.uchile.cl/bitstream/handle/2250/148293/Regular-Queries-on-Graph-Databases.pdf?sequence=1
http://repositorio.uchile.cl/bitstream/handle/2250/148293/Regular-Queries-on-Graph-Databases.pdf?sequence=1
https://algowiki-project.org/en/Transitive_closure_of_a_directed_graph
https://algowiki-project.org/en/Transitive_closure_of_a_directed_graph
https://hal.archives-ouvertes.fr/hal-01344015/document
https://faculty.utrgv.edu/xiang.lian/papers/TKDE15-weiguo.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0923596518306155
https://perso.telecom-paristech.fr/bloch/papers/FSS-Aymeric.pdf
https://perso.telecom-paristech.fr/bloch/papers/FSS-Aymeric.pdf
https://opencommons.uconn.edu/dissertations/AAI9942566/
https://ieeexplore.ieee.org/document/8659222
https://www.igi-global.com/article/investigating-the-effects-of-object-relational-impedance-mismatch-on-the-efficiency-of-object-relational-mapping-frameworks/266402
https://www.igi-global.com/article/investigating-the-effects-of-object-relational-impedance-mismatch-on-the-efficiency-of-object-relational-mapping-frameworks/266402
https://www.igi-global.com/article/investigating-the-effects-of-object-relational-impedance-mismatch-on-the-efficiency-of-object-relational-mapping-frameworks/266402

- 54 -

[4] Clarke, V. and Braun, V. (2013). ‘Teaching thematic analysis: Overcoming challenges and

developing strategies for effective learning’. The Psychologist, 26(2).

[5] Aronson, J. (1994). ‘A pragmatic view of thematic analysis’. The Qualitative Report, 2(1).

Archived version available at:

http://web.archive.org/web/20000303144031/http://www.nova.edu/ssss/QR/BackIssues/Q

R2-1/aronson.html (Accessed 25 February 2021).

[6] Ireland, C., Bowers, D., Newton, M. and Waugh, K. (2009). ‘A classification of object-

relational impedance mismatch’. First International Conference on Advances in

Databases, Knowledge, and Data Applications, pp. 36-43. Available at:

https://ieeexplore.ieee.org/abstract/document/5071809 (Accessed 18 November 2020).

[7] Ambler, S. (2003). Agile Database Techniques: Effective Strategies for the Agile Software

Developer. Wiley Publishing.

[8] Ambler, S., Sadalage, P.J. (2006). Refactoring Databases: Evolutionary Database Design.

Addison Wesley Professional.

[9] Niu, B., Martin, P., Powley, W., Horman, R. and Bird, P. (2006). ‘Workload adaptation

in autonomic DBMSs’. Proceedings of the 2006 Conference of the Center for Advanced

Studies on Collaborative Research, pp. 13-23. Available at:

https://dl.acm.org/doi/abs/10.1145/1188966.1188984 (Accessed 10 January 2020).

[10] Vial, G. (2015). ‘Database refactoring: Lessons from the trenches’. IEEE Software, 32(6),

pp.71-79. Available at: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7310988

(Accessed 15 February 2021).

[11] otter.ai, 2020. Untitled. Available at: https://www.otter.ai (Accessed 16 November 2020).

[12] QSR International (2020). NVivo Qualitative Data Analysis Software. Available at:

https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home (Accessed

23 February 2021).

[13] Microsoft Corporation, u.d. ‘Getting Started with Entity Framework 6 Code First using

MVC 5’. Available at: https://docs.microsoft.com/en-

us/aspnet/mvc/overview/gettingstarted/getting-started-with-ef-using-mvc/creating-an-

entityframework-data-model-for-an-asp-net-mvc-application (Accessed 09 May 2018).

[14] Pacific Marine Environmental Laboratory (2018). 1997-98 El Nino Sea Level: Monthly

Mean Sea Level for U.S. West Coast, Alaska, Hawaii. Available at:

https://nctr.pmel.noaa.gov/Sea_level_1997_98/sea_level_1997_98.html (Accessed 08

June 2017).

[15] Galt, J.A., Overland, J.E., Pease, C.H. and Stewart, R.J. (1978). ‘Numerical Studies –

Pacific Marine Environmental Laboratory’. Outer Continental Shelf Environmental

Assessment, Program Research Unit 40. Available at:

https://espis.boem.gov/final%20reports/1479.pdf (Accessed 10 June 2017).

[16] Karwin, B. (2017). SQL Antipatterns. Pragmatic Bookshelf.

[17] Fritchey, G. (2018). SQL Server Execution Plans. 3rd edn. Redgate Software Limited.

[18] Wikipedia, u.d. Spherical Trigonometry. Available at:

https://en.wikipedia.org/wiki/Spherical_trigonometry (Accessed 04 May 2020).

[19] Alvarez, R. and Urla, J. (2002). ‘Tell me a good story: using narrative analysis to examine

information requirements interviews during an ERP implementation’. ACM SIGMIS

Database: the DATABASE for Advances in Information Systems, 33(1), pp.38-52.

Chapter 5

[1] Dennis, A., Wixom, B.H. and Tegarden, D. (2015). Systems analysis and design: An

object-oriented approach with UML. John Wiley & Sons.

[2] Kay, A.C. (1996). ‘The early history of Smalltalk’. History of Programming Languages,

vol. 2, pp. 511-598. Available at:: https://doi.org/10.1145/234286.1057828 (Accessed 20

February 2020).

[3] Suppes, P. (1960). Axiomatic set theory. Courier Corporation.

http://web.archive.org/web/20000303144031/http:/www.nova.edu/ssss/QR/BackIssues/QR2-1/aronson.html
http://web.archive.org/web/20000303144031/http:/www.nova.edu/ssss/QR/BackIssues/QR2-1/aronson.html
https://ieeexplore.ieee.org/abstract/document/5071809
https://dl.acm.org/doi/abs/10.1145/1188966.1188984
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7310988
https://www.otter.ai/
https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home
https://docs.microsoft.com/en-us/aspnet/mvc/overview/gettingstarted/getting-started-with-ef-using-mvc/creating-an-entityframework-data-model-for-an-asp-net-mvc-application
https://docs.microsoft.com/en-us/aspnet/mvc/overview/gettingstarted/getting-started-with-ef-using-mvc/creating-an-entityframework-data-model-for-an-asp-net-mvc-application
https://docs.microsoft.com/en-us/aspnet/mvc/overview/gettingstarted/getting-started-with-ef-using-mvc/creating-an-entityframework-data-model-for-an-asp-net-mvc-application
https://nctr.pmel.noaa.gov/Sea_level_1997_98/sea_level_1997_98.html
https://espis.boem.gov/final%20reports/1479.pdf
https://en.wikipedia.org/wiki/Spherical_trigonometry
https://doi.org/10.1145/234286.1057828

- 55 -

[4] Ireland, C., Bowers, D., Newton, M. and Waugh, K. (2009). ‘A classification of object-

relational impedance mismatch’. First International Conference on Advances in

Databases, Knowledge, and Data Applications, pp. 36-43. Available at:

https://ieeexplore.ieee.org/abstract/document/5071809 (Accessed 18 November 2020).

[5] Phillippi, S. (2005). ‘Model-driven generation and testing of object-relational mappings’.

Journal of Systems and Software, 77(2), pp. 193-207. Available at:

https://doi.org/10.1016/j.jss.2004.07.252 (Accessed 04 November 2018).

[6] Chen, T., Shang, W., Zhen, M.J., Hassan, A.E., Nasser, M. and Flora, P. (2014).

‘Detecting performance anti-patterns for applications developed using object-relational

mapping’. Proceedings of the 36th International Conference on Software Engineering, pp.

1001-1012. Available at: https://doi.org/10.1145/2568225.2568259 (Accessed 16 January

2020).

[7] Microsoft Corporation, Narumoto, M., Bennage, C. and Wasson, M. (2017). Extraneous

Fetching Antipattern. Available at: https://docs.microsoft.com/en-

us/azure/architecture/antipatterns/extraneousfetching (Accessed 10 January 2020).

[8] Delaney, K. (2013). Microsoft SQL Server 2012 Internals. Microsoft Press.

[9] Microsoft Corporation (2017). Clustered and Nonclustered Indexes Described. Available

at: https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-

nonclustered-indexes-described?view=sql-server-2017 (Accessed 20 February 2021).

[10] Oracle Corporation (2018). Managing Indexes (Oracle Database Online Documentation

10g). Available at: https://docs.oracle.com/cd/B19306_01/server.102/b14231/indexes.htm

(Accessed 20 February 2021).

[11] Sellis, T.K. (1988). ‘Intelligent caching and indexing techniques for relational database

systems’. Information Systems, 13(2), pp.175-185. Available at:

https://www.sciencedirect.com/science/article/abs/pii/0306437988900142 (Accessed 21

February 2021).

[14] Chen, A. N. (1999). Improving database performances in a changing environment with

uncertain and dynamic information demand: An intelligent database system approach.

Doctoral dissertation. University of Connecticut. Available at:

https://opencommons.uconn.edu/dissertations/AAI9942566/ (Accessed 02 February 2017).

[15] Batini, C., Lenzerini, M. and Navathe, S.B. (1986). ‘A comparative analysis of

methodologies for database schema integration’. ACM Computing Surveys (CSUR), 18(4),

pp. 323-364. Available at: https://doi.org/10.1145/27633.27634 (Accessed 20 February

2021).

[16] Pinkel, C., Binnig, C., Jiménez-Ruiz, E., May, W. et al. (2015). ‘RODI: A benchmark for

automatic mapping generation in relational-to-ontology data integration’. European

Semantic Web Conference (ESWC ’15), pp. 21-37. Available at:

https://doi.org/10.1007/978-3-319-18818-8_2 (Accessed 25 February 2021).

[17] Dedić, N. and Stanier, C. (2016). ‘Towards differentiating business intelligence, big data,

data analytics and knowledge discovery’. International Conference on Enterprise Resource

Planning Systems, vol. 285, pp. 114-122. Available at:

https://link.springer.com/chapter/10.1007/978-3-319-58801-8_10 (Accessed 25 February

2021).

[18] Gandomi, A. and Haider, M. (2015). ‘Beyond the hype: Big data concepts, methods, and

analytics’. International Journal of Information Management, 35(2), pp. 137-144.

Available at: https://doi.org/10.1016/j.ijinfomgt.2014.10.007 (Accessed 25 February 2021).

[19] Hamming, R.W. (1950). ‘Error detecting and error correcting codes’. Bell Labs Technical

Journal, 29(2), pp. 147-160. Available at: https://doi.org/10.1002/j.1538-

7305.1950.tb00463.x (Accessed 26 February 2021).

[20] Codd, E.F. (1970). ‘A relational model of data for large shared data banks’.

Communications of the ACM, 13(6), pp.377-387.

[21] Molková, L. (2012). Theory and Practice of Relational Algebra: Transforming Relational

Algebra to SQL. Lambert Academic Publishing.

[22] Chaudhuri, S. (1998). ‘An overview of query optimization in relational systems’.

Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

https://ieeexplore.ieee.org/abstract/document/5071809
https://doi.org/10.1016/j.jss.2004.07.252
https://doi.org/10.1145/2568225.2568259
https://docs.microsoft.com/en-us/azure/architecture/antipatterns/extraneousfetching
https://docs.microsoft.com/en-us/azure/architecture/antipatterns/extraneousfetching
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-2017
https://docs.oracle.com/cd/B19306_01/server.102/b14231/indexes.htm
https://www.sciencedirect.com/science/article/abs/pii/0306437988900142
https://opencommons.uconn.edu/dissertations/AAI9942566/
https://doi.org/10.1145/27633.27634
https://doi.org/10.1007/978-3-319-18818-8_2
https://link.springer.com/chapter/10.1007/978-3-319-58801-8_10
https://doi.org/10.1016/j.ijinfomgt.2014.10.007
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x

- 56 -

Database Systems, pp. 34-43. Available at: https://doi.org/10.1145/275487.275492

(Accessed 23 February 2021).

[23] Pachev, S. (2007). Understanding MySQL Internals. O’Reilly, Ch. 9.

[24] Nevarez, B. (2010). Inside the SQL Query Optimizer. Simple Talk Publishing.

[25] Brualdi, R.A. and Ryser, H. (1991). Combinatorial matrix theory. Cambridge University

Press.

[26] Feynman, R., eds. Hey, A.J. and Allen, R.W. (1999). Feynman: Lectures on Computation.

Penguin. Ch. 4, pp. 111-113.

[27] Harary, F. (1962). ‘The determinant of the adjacency matrix of a graph’. Siam Review,

4(3), pp. 202-210. Society for Industrial and Applied Mathematics. Available at:

https://doi.org/10.1137/1004057 (Accessed 23 February 2021).

[28] Oracle Corporation (2018). SQL Processing (Oracle Database Online Documentation 12g

Release 1) Available at:

https://docs.oracle.com/database/121/TGSQL/tgsql_sqlproc.htm#TGSQL175 (Accessed

22 February 2021).

[29] Mazumdar, P., Agarwal, S. and Banerjee, A. (2016). ‘Azure SQL Database: Performance

and Monitoring’ in Pro SQL Server on Microsoft Azure. Apress.

[30] Chang, J. (2019). Execution Plan Cost Model. Available at:

http://www.qdpma.com/CBO/PlanCost.html (Accessed 02 October 2020).

[31] Microsoft Corporation (2020). SQL Server Index Architecture and Design Guide. Available

at: https://docs.microsoft.com/en-us/sql/relational-databases/sql-server-index-design-

guide?view=sql-server-ver15 (Accessed 28 May 2020).

[32] Oracle Corporation (2015). Indexes and Index-Organised Tables. Available at:

https://docs.oracle.com/cd/E11882_01/server.112/e40540/indexiot.htm#CNCPT721

(Accessed 28 May 2020).

[33] Korotkevitch, D. (2014). Pro SQL Server Internals. Apress, pp. 125-148.

[34] Strate, J. and Krueger, T. (2012). Expert Performance Indexing for SQL Server 2012.

Apress, pp. 51-89.

[35] Fritchey, G. and Dam, S. (2009). ‘Execution Plan Cache Analysis’ in SQL Server 2008

Query Performance Tuning Distilled. Springer, pp. 241- 281.

Chapter 6

[1] Young, N. (1988). An Introduction to Hilbert Space. Cambridge University Press.

[2] Knuth, D. (1965). ‘On the translation of languages from left to right’. Information and

Control, vol. 8, pp 607-639. Available at:

https://www.sciencedirect.com/science/article/pii/S0019995865904262 (Accessed 06

February 2019).

[3] Free Software Foundation (2014). GNU Operating System: GNU Bison. Available at:

https://www.gnu.org/software/bison/ (Accessed 06 February 2019).

Chapter 7

[1] City of Chicago (2017). Public Safety dataset. Available at:

https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2 (Accessed 18

October 2017).

Chapter 8

[1] Colley, D., Stanier, C., and Asaduzzaman, M. (2020). ‘Investigating the Effects of Object-

Relational Impedance Mismatch on the Efficiency of Object-Relational Mapping

https://doi.org/10.1145/275487.275492
https://doi.org/10.1137/1004057
https://docs.oracle.com/database/121/TGSQL/tgsql_sqlproc.htm#TGSQL175
http://www.qdpma.com/CBO/PlanCost.html
https://docs.microsoft.com/en-us/sql/relational-databases/sql-server-index-design-guide?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/sql-server-index-design-guide?view=sql-server-ver15
https://docs.oracle.com/cd/E11882_01/server.112/e40540/indexiot.htm#CNCPT721
https://www.sciencedirect.com/science/article/pii/S0019995865904262
https://www.gnu.org/software/bison/
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2

- 57 -

Frameworks’. Journal of Database Management, 31(4). Available at: https://www.igi-

global.com/article/investigating-the-effects-of-object-relational-impedance-mismatch-on-the-

efficiency-of-object-relational-mapping-frameworks/266402 (Accessed 18 January 2021)

[2] Suppes, P. (1960). Axiomatic set theory. Courier Corporation.

[3] Yourdon, E. (1989). Modern Structured Analysis. Prentice-Hall.

[4] Everest, G.C. (1976). ‘Basic data structure models explained with a common example’.

Proceedings of the Fifth Texas Conference on Computing Systems, pp. 18-19. Available at:

https://www.researchgate.net/profile/Gordon-Everest-

2/publication/291448084_BASIC_DATA_STRUCTURE_MODELS_EXPLAINED_WI

TH_A_COMMON_EXAMPLE/links/57affb4b08ae95f9d8f1ddc4/BASIC-DATA-

STRUCTURE-MODELS-EXPLAINED-WITH-A-COMMON-EXAMPLE.pdf (Accessed 23

February 2021).

[5] Microsoft Corporation (2017). SQL Server Plan Cache Object. Available at:

https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-

plan-cache-object?view=sql-server-ver15 (Accessed 29 January 2021).

[6] TPC, 2010. TPC-C. Available at: http://www.tpc.org/tpcc/ (Accessed 07 February

2020).

[7] HammerDB, 2020. Untitled. Available at: https://www.hammerdb.com/ (Accessed 03

February 2020).

[8] Microsoft Corporation, (2018). Create Indexed Views. Available at:

https://docs.microsoft.com/en-us/sql/relational-databases/views/create-indexed-

views?view=sql-server-ver15 (Accessed 21 July 2020).

[9] Oracle Corporation, (2018). Advanced Materialized Views. Available at:

https://docs.oracle.com/database/121/DWHSG/advmv.htm#DWHSG-GUID-F7394DFE-

7CF6-401C-A312-C36603BEB01B (Accessed 21 July 2020).

[10] Microsoft Corporation (2017). ‘Configure Parallel Index Operations’. Available at:

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/configure-parallel-index-

operations?view=sql-server-ver15 (Accessed 21 June 2020).

Chapter 9

[1] Knuth, D. (1965). ‘On the translation of languages from left to right’. Information and

Control, vol. 8, pp 607-639. Available at:

https://www.sciencedirect.com/science/article/pii/S0019995865904262 (Accessed 06

February 2019).

[2] Atzeni, P., Jensen, C.S., Orsi, G., Ram, S., Tanca, L. and Torlone, R. (2013). ‘The

relational model is dead, SQL is dead, and I don't feel so good myself’. ACM SIGMOD

Record, 42(2), pp.64-68.

[3] Ireland, C., Bowers, D., Newton, M. and Waugh, K. (2009). ‘A classification of object-

relational impedance mismatch’. First International Conference on Advances in

Databases, Knowledge, and Data Applications, pp. 36-43. Available at:

https://ieeexplore.ieee.org/abstract/document/5071809 (Accessed 18 November 2020).

[4] Kimball, R. and Ross, M. (2013). The Data Warehouse Toolkit: The definitive guide to

dimensional modeling. John Wiley & Sons.

[5] Codd, E.F. (1971). ‘A data base sublanguage founded on the relational calculus’.

Proceedings of the 1971 ACM SIGFIDET Workshop on Data Description, Access and

Control, pp. 35-68.

[6] Chen, A. N. (1999). Improving database performances in a changing environment with

uncertain and dynamic information demand: An intelligent database system approach.

Doctoral dissertation. University of Connecticut. Available at:

https://opencommons.uconn.edu/dissertations/AAI9942566/ (Accessed 02 February 2017).

https://www.igi-global.com/article/investigating-the-effects-of-object-relational-impedance-mismatch-on-the-efficiency-of-object-relational-mapping-frameworks/266402
https://www.igi-global.com/article/investigating-the-effects-of-object-relational-impedance-mismatch-on-the-efficiency-of-object-relational-mapping-frameworks/266402
https://www.igi-global.com/article/investigating-the-effects-of-object-relational-impedance-mismatch-on-the-efficiency-of-object-relational-mapping-frameworks/266402
https://www.researchgate.net/profile/Gordon-Everest-2/publication/291448084_BASIC_DATA_STRUCTURE_MODELS_EXPLAINED_WITH_A_COMMON_EXAMPLE/links/57affb4b08ae95f9d8f1ddc4/BASIC-DATA-STRUCTURE-MODELS-EXPLAINED-WITH-A-COMMON-EXAMPLE.pdf
https://www.researchgate.net/profile/Gordon-Everest-2/publication/291448084_BASIC_DATA_STRUCTURE_MODELS_EXPLAINED_WITH_A_COMMON_EXAMPLE/links/57affb4b08ae95f9d8f1ddc4/BASIC-DATA-STRUCTURE-MODELS-EXPLAINED-WITH-A-COMMON-EXAMPLE.pdf
https://www.researchgate.net/profile/Gordon-Everest-2/publication/291448084_BASIC_DATA_STRUCTURE_MODELS_EXPLAINED_WITH_A_COMMON_EXAMPLE/links/57affb4b08ae95f9d8f1ddc4/BASIC-DATA-STRUCTURE-MODELS-EXPLAINED-WITH-A-COMMON-EXAMPLE.pdf
https://www.researchgate.net/profile/Gordon-Everest-2/publication/291448084_BASIC_DATA_STRUCTURE_MODELS_EXPLAINED_WITH_A_COMMON_EXAMPLE/links/57affb4b08ae95f9d8f1ddc4/BASIC-DATA-STRUCTURE-MODELS-EXPLAINED-WITH-A-COMMON-EXAMPLE.pdf
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-plan-cache-object?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-plan-cache-object?view=sql-server-ver15
http://www.tpc.org/tpcc/
https://www.hammerdb.com/
https://docs.microsoft.com/en-us/sql/relational-databases/views/create-indexed-views?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/views/create-indexed-views?view=sql-server-ver15
https://docs.oracle.com/database/121/DWHSG/advmv.htm#DWHSG-GUID-F7394DFE-7CF6-401C-A312-C36603BEB01B
https://docs.oracle.com/database/121/DWHSG/advmv.htm#DWHSG-GUID-F7394DFE-7CF6-401C-A312-C36603BEB01B
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/configure-parallel-index-operations?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/configure-parallel-index-operations?view=sql-server-ver15
https://www.sciencedirect.com/science/article/pii/S0019995865904262
https://ieeexplore.ieee.org/abstract/document/5071809
https://opencommons.uconn.edu/dissertations/AAI9942566/

- 58 -

Appendix A – Practitioner Survey Structure

Questions and responses to the survey (n=19) follow below.

Further information can be found in the Qualtrics link here:

http://staffordshire.eu.qualtrics.com/jfe/form/SV_51kxz9na13U8hBX

DB Attitudes Survey

Q1 - How would you describe your primary job role?

Field Minimum Maximum Mean
Std

Deviation
Variance Count

1

How would you

describe your

primary job

role? - Selected

Choice

1.00 7.00 2.13 1.93 3.73 16

Answer % Count

1 Database Administrator or Database Developer 68.75% 11

2 Systems or Database Architect 6.25% 1

http://staffordshire.eu.qualtrics.com/jfe/form/SV_51kxz9na13U8hBX

- 59 -

3 Systems or Infrastructure Administrator 0.00% 0

4 Business Intelligence / MI Professional 12.50% 2

5 Analyst 0.00% 0

6 Academic (Researcher, Lecturer etc.) 6.25% 1

7 Web / Applications Developer 6.25% 1

8 Other (please specify) 0.00% 0

 Total 100% 16

Q2 - How many years of experience do you have in your

primary job role or function?

Field Minimum Maximum Mean
Std

Deviation
Variance Count

1

How many years

of experience do

you have in your

primary job role

or function?

2.00 6.00 4.75 1.39 1.94 16

Answer % Count

1 Up to 1 year 0.00% 0

2 Between 1 and 3 years 12.50% 2

- 60 -

3 Between 3 and 5 years 6.25% 1

4 Between 5 and 7 years 18.75% 3

5 Between 7 and 10 years 18.75% 3

6 More than 10 years 43.75% 7

 Total 100% 16

Q25 - In your role, do you use object-relational mapping

(ORM) frameworks, or work with databases that process

queries generated from ORM s? Examples of ORM s include:

Entity Framework, H ibernate / nH ibernate; Dapper,

ActiveJPA, Enterprise JavaBeans, LINQ to SQL,

DataObjects.NET and TopLink.

Field Min Max Mean
Std

Dev
Variance Count

1

In your role, do you use object-

relational mapping (ORM)

frameworks, or work with

databases that process queries

generated from ORMs? Examples

of ORMs include: Entity

Framework, Hibernate /

nHibernate; Dapper, ActiveJPA,

Enterprise JavaBeans, LINQ to

SQL, DataObjects.NET and

TopLink.

1.00 2.00 1.57 0.49 0.24 14

- 61 -

Answer % Count

1 Yes 42.86% 6

2 No 57.14% 8

 Total 100% 14

Q5 - Please indicate how much you would agree, or disagree,

with the following statements:

Field Minimum Maximum Mean
Std

Deviation
Variance Count

1

I am proficient at

writing queries in

SQL

6.00 7.00 6.93 0.25 0.06 15

- 62 -

2

I am proficient in

database

administration

4.00 7.00 6.40 0.80 0.64 15

3

I am good at tuning

SQL queries for

better performance

2.00 7.00 6.07 1.34 1.80 15

4

I am able to design

efficient database

structures

4.00 7.00 6.33 1.01 1.02 15

5

I am proficient in

tuning database

platforms for better

performance

2.00 7.00 5.86 1.46 2.12 14

6

I am good at

working with

databases via

applications (such as

.NET, Java, Excel)

2.00 7.00 4.67 1.53 2.36 15

7

I can install and

configure database

platforms

6.00 7.00 6.67 0.47 0.22 15

8

I am good at

selecting and tuning

indexes for better

performance

2.00 7.00 5.43 1.80 3.24 14

Question

Strongl

y

disagre

e

Disagre

e

Neithe

r agree

nor

disagre

e

 Agree
Strongl

y agree

Tota

l

1

I am

proficient at

writing

queries in

SQL

0.00% 0 0.00% 0 0.00% 0 6.67% 1 93.33%
1

4
15

2

I am

proficient in

database

administrati

on

0.00% 0 0.00% 0 6.67% 1
40.00

%
6 53.33% 8 15

3

I am good at

tuning SQL

queries for

better

performance

0.00% 0 6.67% 1 6.67% 1
40.00

%
6 46.67% 7 15

- 63 -

4

I am able to

design

efficient

database

structures

0.00% 0 0.00% 0 13.33% 2
26.67

%
4 60.00% 9 15

5

I am

proficient in

tuning

database

platforms for

better

performance

0.00% 0 7.14% 1 14.29% 2
35.71

%
5 42.86% 6 14

6

I am good at

working

with

databases

via

applications

(such as

.NET, Java,

Excel)

0.00% 0 13.33% 2 46.67% 7
26.67

%
4 13.33% 2 15

7

I can install

and

configure

database

platforms

0.00% 0 0.00% 0 0.00% 0
33.33

%
5 66.67%

1

0
15

8

I am good at

selecting and

tuning

indexes for

better

performance

0.00% 0 14.29% 2 21.43% 3
21.43

%
3 42.86% 6 14

- 64 -

Q6 - How often, on average, do you use, administer or

otherwise work with database systems?

Field Minimum Maximum Mean
Std

Deviation
Variance Count

1

How often, on

average, do you use,

administer or

otherwise work with

database systems? -

Selected Choice

1.00 2.00 1.07 0.25 0.06 15

Answer % Count

1 Every day 93.33% 14

2 Most days 6.67% 1

3 Around once a week 0.00% 0

- 65 -

4 Every two or three weeks 0.00% 0

5 Once a month 0.00% 0

6 Less than once a month 0.00% 0

7 I do not work with database systems 0.00% 0

8 Other (please specify) 0.00% 0

 Total 100% 15

Q7 - Thinking about the database platforms that you use or

administer the most, please estimate the sources of query

traffic:

- 66 -

Question 0-25%
25-

50%

50-

75%

75-

100%
 Total

1
Object-Relational

Mapping frameworks
40.00% 6 20.00% 3 33.33% 5 6.67% 1 15

2
User-written (adhoc)

queries
43.75% 7 37.50% 6 12.50% 2 6.25% 1 16

3

Queries from data

visualisation or

warehousing platforms

42.86% 6 50.00% 7 7.14% 1 0.00% 0 14

4
Queries from third-

party software
66.67% 10 6.67% 1 20.00% 3 6.67% 1 15

5
Queries from in-house

applications
7.69% 1 30.77% 4 15.38% 2 46.15% 6 13

6

Queries from reporting

platforms (such as

SSRS, Crystal Reports,

SAP)

26.67% 4 46.67% 7 13.33% 2 13.33% 2 15

7
Queries from other

sources
66.67% 6 22.22% 2 0.00% 0 11.11% 1 9

Q8 - Please indicate how much you would agree, or disagree,

with the following statements:

- 67 -

Field Minimum Maximum Mean
Std

Deviation
Variance Count

1

I am broadly

satisfied with query

performance in my

current

environment(s)

1.00 4.00 3.07 1.00 1.00 15

2

Tuning SQL queries

originating from

ORMs is

straightforward

1.00 6.00 2.53 1.50 2.25 15

3

Tuning SQL queries

not originating from

ORMs is

straightforward

1.00 6.00 3.60 1.14 1.31 15

4

Working with Big

Data is increasingly

part of my main job

role or function

1.00 4.00 2.47 1.15 1.32 15

5

The database

schemas I work with

are well-designed

1.00 5.00 2.40 1.08 1.17 15

6

I feel confident

working with non-

relational data

sources

1.00 6.00 3.13 1.45 2.12 15

Question

Stron

gly

disagr

ee

Disag

ree

Neith

er

agree

nor

disag

ree

Agre

e

Stron

gly

agree

Don'

t

know

Tot

al

1

I am

broadly

satisfied

with query

performanc

e in my

current

environme

nt(s)

6.67% 1
26.67

%
4

20.00

%
3

46.67

%
7 0.00% 0

0.00

%
0 15

2

Tuning

SQL

queries

20.00

%
3

46.67

%
7

20.00

%
3

0.00

%
0 0.00% 0

13.33

%
2 15

- 68 -

originating

from

ORMs is

straightfor

ward

3

Tuning

SQL

queries not

originating

from

ORMs is

straightfor

ward

6.67% 1 6.67% 1
26.67

%
4

46.67

%
7 6.67% 1

6.67

%
1 15

4

Working

with Big

Data is

increasingl

y part of

my main

job role or

function

26.67

%
4

26.67

%
4

20.00

%
3

26.67

%
4 0.00% 0

0.00

%
0 15

5

The

database

schemas I

work with

are well-

designed

20.00

%
3

40.00

%
6

26.67

%
4

6.67

%
1 6.67% 1

0.00

%
0 15

6

I feel

confident

working

with non-

relational

data

sources

6.67% 1
40.00

%
6

20.00

%
3

6.67

%
1

20.00

%
3

6.67

%
1 15

Q26 - How relevant do you believe relational databases will

be to organisations in the future?

- 69 -

Field Minimum Maximum Mean
Std

Deviation
Variance Count

1

How relevant do you

believe relational

databases will be to

organisations in the

future? - Selected

Choice

3.00 4.00 3.93 0.26 0.07 14

Answer % Count

1 Legacy, or only as business application backends 0.00% 0

2 Rarely used 0.00% 0

3 Regularly used, not critical 7.14% 1

4 Heavily used, business-critical 92.86% 13

5 Other (please specify) 0.00% 0

 Total 100% 14

- 70 -

Q21 - Please indicate how much you would agree, or disagree,

with the following statements:

Field Minimum Maximum Mean
Std

Deviation
Variance Count

1

Relational integrity

measures, like

foreign key

constraints, make

working with

databases harder

when using ORMs

1.00 4.00 2.30 1.10 1.21 10

2

Database systems

need to integrate

better with object-

oriented application

development

methods

1.00 5.00 3.15 1.03 1.05 13

- 71 -

3

Agile is an effective

software

development

framework

3.00 5.00 3.53 0.62 0.38 15

4

The use of ORMs is

compatible with

good SQL query

design

1.00 5.00 2.71 1.10 1.20 14

5

Normalisation of

database schemas is

compatible with the

use of ORMs

2.00 5.00 3.82 0.83 0.69 11

Question

Strongl

y

disagre

e

Disagre

e

Neithe

r agree

nor

disagre

e

 Agree
Strongl

y agree

Tota

l

1

Relational

integrity

measures,

like foreign

key

constraints,

make

working

with

databases

harder when

using ORMs

30.00% 3 30.00% 3 20.00% 2
20.00

%
2 0.00% 0 10

2

Database

systems

need to

integrate

better with

object-

oriented

application

development

methods

7.69% 1 15.38% 2 38.46% 5
30.77

%
4 7.69% 1 13

3

Agile is an

effective

software

development

framework

0.00% 0 0.00% 0 53.33% 8
40.00

%
6 6.67% 1 15

4
The use of

ORMs is
14.29% 2 28.57% 4 35.71% 5

14.29

%
2 7.14% 1 14

- 72 -

compatible

with good

SQL query

design

5

Normalisatio

n of

database

schemas is

compatible

with the use

of ORMs

0.00% 0 9.09% 1 18.18% 2
54.55

%
6 18.18% 2 11

Q9 - When working with ORM tools (from any perspective),

what are the most regular performance-related challenges

that you experience? Please give as much detail as possible.

When working with ORM tools (from any perspective), what are the most regular

performance-related challenges that you experience? Please give as much detail as

possible.

Overly generic SQL. None of the wider application knowledge is available to the ORM.

Bad queries generated specifying many columns when only one or two needed

SELECT *

N/A

I personally don't use ORM tools in my job.

ORMs tend to generate queries that "work", but are not so great when it comes to

efficiency or legibility. It's often difficult to tune those queries to run in a more efficient

manner without removing the benefits of using an ORM in the first place. We often run

into some issues with parameter sniffing or horrible generated queries/plans as a result

of the ORM, but most of the time the code is acceptable, if not the most efficient.

Reproducing issues, understanding queries, dealing with lazy loading and RBAR

operations.

It's been a few years since I worked with an ORM as a developer (I'm a DBA now), but

I can't seem to recall any *performance* related challenges. Most of the challenges I ran

into were related to development and coding of the application with an ORM.

Poorly written queries

ORM is not a silver bullet and was never intended to solve 100% situations. The

challenge is identify thw 10% cases where ORM will be a hinderance and convincing

team of it

constant churn in the procedure cache

testing how much data can be put in here. testing how much data can be put in here.

testing how much data can be put in here. testing how much data can be put in here.

- 73 -

testing how much data can be put in here. testing how much data can be put in here.

testing how much data can be put in here. testing how much data can be put in here.

testing how much data can be put in here. testing how much data can be put in here.

testing how much data can be put in here. testing how much data can be put in here.

testing how much data can be put in here. testing how much data can be put in here.

Q10 - What do you think are the root cause(s) of any

performance problems you have experienced with ORM s?

Again, please give as much detail as possible.

What do you think are the root cause(s) of any performance problems you have

experienced with ORMs? Again, please give as much detail as possible.

Overly generic SQL. None of the wider application knowledge is available to the ORM.

System generated queries are rarely optimal

Developers (or other ORM users) aren't educated how to use it proficiently. And it does

require some knowledge about how it works.

bad query designs

N/A

I personally haven't came across any root causes of performance problems, but I've

heard that they select too much data.

The ORM just concentrates on accomplishing the task. For more complex tasks that

results in some pretty poor performance with lots of nested queries. Sometimes the

performance issues arise from the developers adding "just one more thing" to code on a

page, resulting in a large number of connect/disconnect operations for each new query.

We had one issue where the actual SQL operations took .5s, but the connect/disconnect

activity was taking over 30s. Refactoring that code to do more operations at once, use

stored procs to do some of the heavier lifting, and reduce the separate operations made

a huge difference. In this case, the issue was the developers trying to be efficient in

adding new features, but neglecting the way the code was called behind the scenes.

Lazy loading, select star, and RBAR operations

N/A

Indexes that should be included as part of an ORM implimentation depend on

development initiative and skill.

poorly written queries

Bad schema/database/business/architecture design. Trying to hammer ORM to solve a

problem ORM is not designed to solve

developpers not understanding how a database works

testing how much data can be put in here. testing how much data can be put in here.

testing how much data can be put in here. testing how much data can be put in here.

testing how much data can be put in here. testing how much data can be put in here.

testing how much data can be put in here.

- 74 -

Q12 - Query performance tuning could be fully replaced by

automated processes. Please indicate if you:

Field Minimum Maximum Mean
Std

Deviation
Variance Count

1

Query performance

tuning could be fully

replaced by

automated

processes. Please

indicate if you:

1.00 5.00 3.57 1.18 1.39 14

Answer % Count

1 Strongly agree 7.14% 1

2 Agree 14.29% 2

3 Neither agree nor disagree 14.29% 2

4 Disagree 42.86% 6

5 Strongly disagree 21.43% 3

6 Don't know 0.00% 0

- 75 -

 Total 100% 14

Q13 - What role could automation have to play in the future

of query performance tuning?

What role could automation have to play in the future of query performance tuning?

Agree, but there will be outlying cases the software / ML algorithm cannot comprehend

and cater for.

Failing back to a previous query plan when a new one performs badly

It could probably easily work with so called low hanging fruits - queries having obvious

issues, like indexing (even if current SQL Server missing index suggestions are bad

example for that). Similar with tuning engine configuration to best practices'

recommendations. It is still way to go to automated code optimization.

Automatic building of indexes. Better choices by the system when auto-creating

statistics and choosing query plans.

Discovering queries that need to be tuned. Automatic tuning most likely won't pick the

best option all the time.

We see some of this now - better adapting for query plans, index tuning on the fly, and

such. In the future we might see more in-memory indexes, and perhaps even some ways

that see patterns and more aggressively cache or aggregate data for retrieval when it

comes to those patterns. I think we'll see more proactive alerting on query degradation

as well so when queries start performing poorly compared to some automated baseline,

the DBAs will get alerts to either act or flag to suspect/re-adjust the baseline.

Guidance towards the right solutions, collecting and analyzing performance data that

leads to tuning recommendations

I don't think automation should play any role in query tuning. I feel it is a process best

left to manually tuning due to intuition, understanding of and changes to business rules,

and getting the most broad coverage of indexes as possible.

Automated processes can help a lot with performance, in special gathering statistics and

using heuristics to point hints, missing indexes, logging errors, etc

don't think it's ever going to happen, need the human touch

- 76 -

Q23 - On a scale of 1 to 10, where 1 represents 'Very

unimportant' and 10 represents 'Very important', how

important do you think the following concepts are when

considering organisational data stores?

Field Minimum Maximum Mean Std Deviation Variance Count

1 Confidentiality 1.00 10.00 8.27 2.64 7.00 15

2 Integrity 6.00 10.00 9.14 1.30 1.69 14

3 Availability 7.00 10.00 8.64 1.23 1.52 14

4 Flexibility 3.00 10.00 6.50 1.55 2.39 14

5 Reliability 4.00 10.00 8.79 1.78 3.17 14

6 Recoverability 6.00 10.00 8.93 1.39 1.92 14

7 Auditability 3.00 10.00 6.62 2.10 4.39 13

8 Performance 5.00 10.00 8.14 1.46 2.12 14

Q16 - Thinking about the database systems that you use or

administer the most, how far do you agree or disagree with

the following statements?

- 77 -

Field Minimum Maximum Mean
Std

Deviation
Variance Count

1

The relational

database schemas

are well-documented

1.00 6.00 2.07 1.44 2.06 15

2

Object-relational

mapping

frameworks are the

future of database

interaction

1.00 4.00 2.38 1.33 1.78 13

3

Automation should

play a greater part

in database

performance tuning

1.00 7.00 4.40 2.09 4.37 15

Question

Strongl

y

disagre

e

Disagre

e

Neither

agree

nor

disagre

e

 Agree
Strongl

y agree

Tota

l

1

The

relational

database

schemas

are well-

documente

d

46.67% 7 33.33% 5 13.33% 2 6.67% 1 0.00% 0 15

2

Object-

relational

mapping

frameworks

are the

future of

database

interaction

38.46% 5 23.08% 3 38.46% 5 0.00% 0 0.00% 0 13

3

Automatio

n should

play a

greater

part in

database

performanc

e tuning

20.00% 3 6.67% 1 20.00% 3
46.67

%
7 6.67% 1 15

- 78 -

Q22 - Agile development methodologies work well with

relational databases. Please indicate if you:

Field Minimum Maximum Mean
Std

Deviation
Variance Count

1

Agile development

methodologies work

well with relational

databases. Please

indicate if you:

1.00 6.00 2.69 1.49 2.21 13

Answer % Count

1 Strongly agree 23.08% 3

2 Agree 38.46% 5

4 Neither agree nor disagree 30.77% 4

6 Disagree 7.69% 1

7 Strongly disagree 0.00% 0

 Total 100% 13

- 79 -

Q24 - Relational databases struggle to perform when dealing

with query flows originating from ORM tools. Please

indicate if you:

Field Minimum Maximum Mean
Std

Deviation
Variance Count

1

Relational databases

struggle to perform

when dealing with

query flows

originating from

ORM tools. Please

indicate if you:

1.00 4.00 2.71 1.16 1.35 14

Answer % Count

1 Strongly agree 14.29% 2

2 Agree 42.86% 6

4 Neither agree nor disagree 42.86% 6

6 Disagree 0.00% 0

7 Strongly disagree 0.00% 0

 Total 100% 14

- 80 -

Appendix B: Strong sentiment groupings from interview analysis

Table 1: Strong-sentiment statements from practitioner interviews

SQL [Interviewer] Do you think SQL was an attractive language in general for

application developers?

[Participant] Yeah, I think so. I think it's, you know, in terms of the

structure, it's, it reads like English, which helps, if you, yeah, as long as

it's been well formatted, and, and fairly well written economic get the gist

of what's happening pretty quickly. There are some terribly written

queries and stuff. But it's, I think, I think with the kind of the formatting

and the linting and stuff that the different ideas there, it does help if I like

when I would get sent a file, or someone would just email over stuff. I just

chuck it in for my, to a way that, you know, whenever I would write it,

reformat it, so I'm used to reading it.

[Participant] I think with SQL, if you think about your problem, and you

have to say how you wanted to get the data, with a few key words, you

can, you can at least make a good attempt at what, what the actual query

should be?

[Participant] …once they learned the basics of the of the language is easy

to get up and running, and at least start pulling down some data, joining

pages together, etc. So they can, as analysts, they could get what they

need.

[Participant] Because if I want to do something in SQL, I might need to

know, like, 30 commands and total. But if I wanted to do something in

[unintelligible] I might need to know, 100, or 200 commands to do.

[Participant] If somebody asked me, I want, you know, I want to become

a data analyst. What kind of tools do I need, what kind of languages so I

need to learn? And I would always say SQL is probably the first one

because it's quite universal.

Query Performance

Improvements

[Interviewer] Is query performance a really hot topic for the companies

you work for? Is it is it you know, a critical thing? Or is it an interesting

that the DBA cares about?

[Participant] Yeah, so probably a lot more of the latter. thing. Yeah.

When I, when I joined [company redacted], for example, I was there for

two years, a lot of the analysts were already using SQL. And they, one of

the DBAs was doing a training session. And it was a kind of a

rudimentary intro to SQL for people that had a new SQL before often new

analysts come in and learn the database structure. Yeah. And the only

thing that he mentioned to do with kind of not locking the database, or

any performance was making sure that you added with no lock on joints.

And apart from that, there was no other mention of kind of how to

optimize or, or anything like that. So you know, for the next two years,

any any optimizations, you would have to go and speak to them directly.

[Participant] …use kind of distributed servers and clusters and nodes and

things like that. It just seems to enhance and processing power. And so try

and move everything to a server because when it's all kind of on premises,

it feels a lot slower.

- 81 -

[Participant] We were using a sort of a relational database to sort of

query and query those 3 million rows, and it just couldn't handle it, it

would take two minutes for a report to refresh.

[Participant] So sometimes stakeholders would be asking questions. And if

Alice couldn't get the data within that 20 minute, kind of querying

window, then it would be like, I can't analyze your data for the last year, I

can only get it for the last week.

Query Accessibility [Participant] So yeah, I think having having more training and more

knowledge, they would have been able to improve their queries and able to

work more efficiently. But at the same time, with the kind of fairly

beginner to intermediate knowledge that the analysts have got them, they

can get the job done anyway.

[Participant] I think there should be some kind of, like help with queries,

because I think at the moment, it gives you kind of errors, and it will say

there was an error on this line, but it doesn't kind of tell you specifically,

what caused the error and what the solution is. So I think there should

have been kind of like, an error checking sort of algorithm that kind of

helps you as you go along with your, of your coding.

ORMs [Participant] I think, knowing how helpful ORM is can be in terms of

generating the the actual syntax for you.

[Participant] I've know, kind of no bone to pick with how queries and the

way that [ORMs] will structure it, but it's more a case of I'm more more

comfortable and familiar with with writing it myself.

NoSQL [Participant] I think NoSQL DBs will be the future thing. Databases with

designs 50-60 years ago, yeah, the initial concepts. So for stuff that was

applicable at the time it, it was good, but with the modern web

applications and user interfaces, and just the volume and in different types

of data we can collect. Trying to put it all into a SQL DB doesn't make

sense when you can have something something like BigQuery or

MongoDB, that you can store different types of stuff in there and install

get good performance and usage.

[Participant] See if I've got if I've got audio visual text, on structured

text surveys, and kind of standard business operations and orders data,

depends on the questions that are coming in, I might have to jump to one

dataset or another, and it might be weeks or even months before I go back

to something. Yeah. Which point I've often forgotten what the schemer is.

And what's, what's the right way?

Future of Data [Participant] No, I wouldn't say SQL is [popular]. No, it's not. I mean, it

is used but not as, and, but not as popular as I would say it once was.

[Participant] I would start with SQL, because it's universal, but there's

also kind of statistical tools you need to learn like, SAS and R, and

Python nowadays, too. So, you know, those are the main sort of

languages, I think that anyone would need to learn to become a data

[scientist].

- 82 -

[Participant] So if you can imagine, like, for [company redacted], we had

20 million visits to our website every week. And every sort of visit might

have, say, 30 interactions. So with data, you know, something like 600

million rows of data every week. And yeah, the way that Google BigQuery

was able to kind of process that data was really incredible in comparison

to sort of more traditional kind of databases.

[Participant] I think big data is is like the way forward for almost every

kind of solution.

[Interviewer] Do you think that the DBA is dead yet? Or, they've been

predicting it for 50 years, but do you think the DBA is finally … going to

have to upskill or get out?

[Participant] I think partially, I think what's gonna happen with kind of

probably increase in DevOps, increase in data analytics and data science,

and then stop being managed on the cloud DBA role, they will become

more of the data engineering with BI-type roles.

[Discussing ability of relational databases to survive]

[Participant] …Oracle venturing into other areas, you know, I mean? Oh,

yes. But as a pure database, it's going to be very difficult.

[Participant] …unless something dramatically comes in which takes away

databases, then, then maybe, but … well, you can add things to the you

know, you can add, add things, you know, we are beginning to add things

to SQL Server. And and I'm just saying that, unless something really

dramatically comes and takes away databases, I can't I think they're here

to stay.

Developers [Participant] I mean, they [the developers] typically work with API's,

because they're like, you know, as a digital corporation, [company

redacted] a lot of a lot of the data was directly from the web, so and that

there was a sort of a mixture.

[Participant] …with a lot of the analysts and people I was working with,

they weren't particularly [good] with SQL in general in terms of writing

their own queries, yeah, and after they would come to me to help them

write their own queries.

Data Governance [from a conversation about improving the data layer]

[Interviewer] …you've got an unlimited money magic wand, what would

you do?

[Participant] I first thing I would do from our experience, is make it

compulsory that whatever type of database you've got the company

invests in, in data dictionaries, or some sort of information based

knowledge base on this is what we've got, why we're collecting it, where

it's actually coming from, not just one DBA Another DBA that left years

ago, yeah, they were getting this, or I remember one, I was looking at

different weather data sets that we had on the site. Where's this data

coming from? Everyone asked, no one knew? Well, as an analyst, I don't

want to trust it. What if it's, yeah, what if it's just someone's someone's

made something that's automated? And it's just randomly being

generated? It doesn't even match up? So having that a kind of better

governance of the data?

- 83 -

[Participant] …because then I've got the trust in it, because I don't want

to use data that I'm not going to trust, or I can't fully, fully account for

the kind of the lifeline of where it's come from. Because I'd rather not

have the data at all.

Data Analysis [Participant] …as an analyst, I don't care on a row-by-row level, I care on

the what's the last 10,000 or 100,000 people that have done this? And

what what attributes Do they have that are similar. So I can actually use

this data to then market more effectively, or I have a pop up, come up to

them on the side. But if it takes 10-15 minutes, you know, they've already

left the site.

[Participant] …customer's perspective, as you say, they want everything to

be to work quickly and efficiently and not have any worries about [that].

[Participant] … typically the analytics sandbox, had an update of either

every 15 minutes or every hour. So when we were planning, how do we

want to do personalization, every we were looking at even every 10

seconds would be too slow. We wanted it ideally every every [sic] second,

if possible, which is where kind of …

[Interviewer] start running into practical difficulties.

[Participant] Yes.

[Participant] …you have to be extremely efficient at writing queries.

[Participant] Yeah, I was cuz I still feel like I'm I was thinking about

logic in an old sort of sequel [SQL] way. So sometimes when I'm learning

new functions and our Python are kind of look at it, and it just feels like

really difficult to do the same thing that I wanted to do. And SQL which

would, which is really easy to do.

[Participant] I work with big data sometimes as well. So, and that's how

they're I think that's how they're raised. To kind of process, you know,

billions and billions of rows of data very efficiently. So when I work with

like, Google Cloud is incredible how fast as in comparison to something

like Teradata.

[Participant] I mean, for me, I don't really care where the data comes from

neither, whether it's cloud or not.

[Participant] I just want it [the database] to be available. I don't want it

to take hours for me to get the data that I need. Because as an analyst,

often you'll be asked a question, and then half an hour later, someone will

walk past your desk and the drive go, do you manage to look at that?

[Participant] …companies are starting to realize that just collecting and

collecting data isn't why the value is the value is going to come from, from

actually using it.

Cloud Data

Analytics

[Participant] …because everything's put everything's in one we see. The

beauty is everything's in one area. application. So you, you do the data

loading in one place. You can create the tables in one place everything is

in a central location, you know, you don't need to go on SQL plus or SQL

developer to, you know, to work with the data. You don't need to go on to

forms.

- 84 -

[Participant] But it's having it on the on the cloud with say AWS, it, I

think it's more beneficial than is not beneficial. Because you aren't, part of

it is you're not really looking, you know, do you know what you want

people to know, and you know, what you want people you'd be able to

control on what people get to see, but you'd be someone else is going to be

looking after that information?

3 Vs of Big Data [Participant] So even even [sic] with one month of data, it wasn't really

possible to do a join in Tara [Tera]data, then due to the volume of data

that was.

[Interviewer] So that I mean, I might know the answer to this one, then.

But would it be fair to say that the relational database system Teradata

in this case wasn't necessarily the best the best solution for what you're

trying to do there?

[Participant] Yeah, absolutely. So that that much day, so it wasn't

possible to really process and aggregate the data within Teradata.

- 85 -

Appendix C : Query objectives and code listings from the initial

investigation

Table 1: Query Objective O1

Descriptor Values

Summary Return the mean average air temperature for all buoys on a month-by-month, year-by-

year basis, ordered by month and year ascending.

Manual SQL SELECT [dimDate].[mthNum], [dimDate].[yrNum],

 AVG([factTAO].[airTemp]) AS [airtemp__avg]

FROM [factTAO]

INNER JOIN [dimDate]

ON ([factTAO].[dateKey] = [dimDate].[dateKey])

GROUP BY [dimDate].[mthNum], [dimDate].[yrNum]

ORDER BY [dimDate].[mthNum] ASC, [dimDate].[yrNum] ASC

Python/Django FactTAO.objects.all().select_related('datekey').values('datekey__mth

num',

'datekey__yrnum').annotate(Avg('airtemp')).order_by('datekey__mthnum

', 'datekey__yrnum')

ORM SQL SELECT [dimDate].[mthNum], [dimDate].[yrNum],

 AVG(CONVERT(float, [factTAO].[airTemp])) AS [airtemp__avg]

FROM [factTAO]

INNER JOIN [dimDate] ON ([factTAO].[dateKey] = [dimDate].[dateKey])

GROUP BY [dimDate].[mthNum], [dimDate].[yrNum]

ORDER BY [dimDate].[mthNum] ASC, [dimDate].[yrNum] ASC

Table 2: Query Objective O2

Descriptor Values

Summary Return the earliest and latest dates for which buoy sensor readings exist within the data

set.

Manual SQL SELECT MIN(f.dateKey) [earliestDate], MAX(f.dateKey) [latestDate]

FROM dbo.factTAO f

Python/Django FactTAO.objects.aggregate(Min('datekey'), Max('datekey'))

ORM SQL SELECT MIN([factTAO].[dateKey]) AS [datekey__min],

 MAX([factTAO].[dateKey]) AS [datekey__max]

FROM [factTAO]

Table 3: Query Objective O3

Descriptor Values

Summary Return the latitude and longitude positions of all buoys in January 1984, with no

ordering.

Manual SQL SELECT f.obsID, l.lat, l.long

- 86 -

FROM dbo.factTAO f

INNER JOIN dbo.dimLocation l ON f.locationKey = l.locationKey

INNER JOIN dbo.dimDate d ON f.dateKey = d.dateKey

WHERE d.yrNum = 1984 AND d.mthNum = 1

Python/Django FactTAO.objects.select_related('dimlocation__locationkey').all()

.select_related('dimdate__datekey').all().values('obsid',

'locationkey__lat', 'locationkey__long').filter(datekey__mthnum =

1, datekey__yrnum = 1984)

ORM SQL SELECT [factTAO].[obsID], [dimLocation].[lat], [dimLocation].[long]

FROM [factTAO]

INNER JOIN [dimLocation]

ON ([factTAO].[locationKey] = [dimLocation].[locationKey])

INNER JOIN [dimDate]

ON ([factTAO].[dateKey] = [dimDate].[dateKey])

WHERE ([dimDate].[mthNum] = 1 AND [dimDate].[yrNum] = 1984)

Table 4: Query Objective O4

Descriptor Values

Summary Analyse sea surface temperature during the year 1990, and return all rows, including

missing data, indicating as anomalous all values where the sea surface temperature is

further than 2.5 standard deviations from the average for the year, ordered by date

ascending.

Manual SQL SELECT d.dateKey, f.obsID, f.seaSurfaceTemp,

 CASE WHEN f.seaSurfaceTemp IS NULL

 THEN 'Data missing'

 WHEN ABS(f.seaSurfaceTemp - sd.[avg]) > (2.5 *

sd.sd) THEN 'Anomalous'

 ELSE 'Normal'

 END [isAnomalous]

FROM dbo.factTAO f

INNER JOIN dbo.dimDate d

ON f.dateKey = d.dateKey

CROSS JOIN (

 SELECT AVG(f.seaSurfaceTemp) [avg], STDEV(f.seaSurfaceTemp)

[sd]

 FROM dbo.factTAO f

 INNER JOIN dbo.dimDate d

 ON f.dateKey = d.dateKey

 WHERE d.yrNum = 1990) sd

WHERE d.yrNum = 1990

ORDER BY d.dateKey ASC

Python/Django aggs =

FactTAO.objects.select_related('datekey').filter(datekey__yrnum =

'1990').aggregate(Avg('seasurfacetemp'), StdDev('seasurfacetemp'))

outer = FactTAO.objects.select_related('datekey').values('datekey',

'obsid', 'seasurfacetemp', isAnomalous = Case(When(seasurfacetemp =

None, then = Value('Data Missing')), default = Value('Normal'),

output_field = CharField())).filter(datekey__yrnum =

1990).order_by('datekey')

for i in outer:

- 87 -

 if abs((float(i.get('seasurfacetemp') or 0) -

 aggs.get('seasurfacetemp__avg'))) > 2.5 *

 aggs.get('seasurfacetemp__stddev') and (i.get('isAnomalous')

!= 'Data Missing'):

 i['isAnomalous'] = 'Anomalous'

ORM SQL (@P1 int)

SELECT AVG(CONVERT(float, [factTAO].[seaSurfaceTemp])) AS

[seasurfacetemp__avg], STDEVP([factTAO].[seaSurfaceTemp]) AS

[seasurfacetemp__stddev]

FROM [factTAO]

INNER JOIN [dimDate]

ON ([factTAO].[dateKey] = [dimDate].[dateKey])

WHERE [dimDate].[yrNum] = @P1

(@P1 nvarchar(24),@P2 nvarchar(12),@P3 int)

SELECT [factTAO].[dateKey], [factTAO].[obsID],

[factTAO].[seaSurfaceTemp],

 CASE WHEN [factTAO].[seaSurfaceTemp] IS NULL

 THEN @P1

 ELSE @P2

 END AS [isAnomalous]

FROM [factTAO]

INNER JOIN [dimDate] ON ([factTAO].[dateKey] =

[dimDate].[dateKey])

WHERE [dimDate].[yrNum] = @P3

ORDER BY [factTAO].[dateKey] ASC

Table 5: Query Objective O5

Descriptor Values

Summary Return the approximate distance in miles between the two buoys that were furthest apart

on 01 May 1994, ignoring missing data.

Manual SQL ;WITH locationData AS (

 SELECT f.obsID, d.dateKey, l.lat, l.long

 FROM dbo.factTAO f

 INNER JOIN dbo.dimLocation l ON f.locationKey = l.locationKey

 INNER JOIN dbo.dimDate d ON f.dateKey = d.dateKey

 WHERE d.dateKey = '1994-05-01'),

 allCombinations AS (

 SELECT l1.obsID [from], l2.obsID [to],

 l1.lat [fromLat], l2.lat [toLat],

 l1.long [fromLong], l2.long [toLong]

 FROM locationData l1

 CROSS JOIN locationData l2),

 distances AS (

 SELECT c.[from], c.[to], c.fromLat, c.fromLong, c.toLat,

c.toLong,

 MAX(ACOS(SIN(c.fromLat)*SIN(c.toLat) +

 COS(c.fromLat)*COS(c.toLat)*COS(c.toLong -

c.fromLong)) * 3958.75) [d]

 FROM allCombinations c

 GROUP BY c.[from], c.[to], c.[fromLat], c.[toLat], c.fromLong,

c.toLong)

- 88 -

SELECT TOP 1 CAST(d.d AS NUMERIC(16,2)) [MaxDistance]

FROM distances d

ORDER BY [d] DESC

Python /

Django

from django.db.models import Max

import math

locationData = FactTAO.objects.select_related('datekey',

'locationkey').values('obsid', 'datekey', 'locationkey__lat',

'locationkey__long').filter(datekey = '1994-05-01')

locationDataList = list(locationData)

vals = []

for i in locationDataList:

 vals.append(list(i.values()))

allCombinations = []

for i in range(0, len(vals)):

 for j in range(0, len(vals)):

 r = dict({"from":vals[i][0], "to":vals[j][0],

"fromLat":vals[i][2], "toLat":vals[j][2], "fromLong":vals[i][3],

"toLong":vals[j][3]})

 allCombinations.append(r)

for row in allCombinations:

 LocationDataTempTable(fromField = row.get("from"), toField =

row.get("to"), fromLat = row.get("fromLat"), toLat =

row.get("toLat"), fromLong = row.get("fromLong"), toLong =

row.get("toLong")).save()

all = LocationDataTempTable.objects.all()

dists = []

for i in all:

 dists.append(i.distance)

max(dists)

ORM SQL declare @p1 int set @p1=NULL

exec sp_prepexec @p1 output,N'@P1 nvarchar(20)',N'SELECT

[factTAO].[obsID], [factTAO].[dateKey], [dimLocation].[lat],

[dimLocation].[long] FROM [factTAO] INNER JOIN [dimLocation] ON

([factTAO].[locationKey] = [dimLocation].[locationKey]) WHERE

[factTAO].[dateKey] = @P1',N'1994-05-01'

select @p1

(the following query is repeated 1,156 times with different

parameters)

declare @p1 int set @p1=NULL

exec sp_prepexec @p1 output,N'@P1 int,@P2 int,@P3 float,@P4 float,@P5

float,@P6 float',N'SET NOCOUNT ON INSERT INTO [locationDataTempTable]

([from], [to], [fromLat], [toLat], [fromLong], [toLong]) VALUES (@P1,

@P2, @P3, @P4, @P5, @P6); SELECT CAST(SCOPE_IDENTITY() AS

bigint)',997,997,46.064999999999998,46.064999999999998,57.38000000000

0003,57.380000000000003

select @p1

SELECT [locationDataTempTable].[uqid],

[locationDataTempTable].[from], [locationDataTempTable].[to],

[locationDataTempTable].[fromLat], [locationDataTempTable].[toLat],

[locationDataTempTable].[fromLong], [locationDataTempTable].[toLong]

FROM [locationDataTempTable]

- 89 -

Appendix D:

Similarity scoring and schema selection – code listings

This appendix contains the code listings referenced in Chapter 7.

Code Listing 1: Python implementation of Algorithm 1

def calculateQuerySimilarity (cubeA, cubeB):

 #calculate Hamming distance

 hamming = 0;

 cubeAEdgeCount = 0;

 cubeBEdgeCount = 0;

 for i in range(0, len(cubeA)):

 for j in range(0, len(cubeA[0])):

 for k in range(0, len(cubeA[0][0])):

 if cubeA[i][j][k] != cubeB[i][j][k]:

 hamming += 1;

 if cubeA[i][j][k] == 1:

 cubeAEdgeCount += 1;

 if cubeB[i][j][k] == 1:

 cubeBEdgeCount += 1;

 maxEdges = max(cubeAEdgeCount, cubeBEdgeCount);

 print("Hamming distance: " + str(hamming));

 print("Maximum number of edges: " + str(maxEdges));

 similarity = round(1.0 - ((hamming / 2.0) / maxEdges),2);

 #print("Query similarity score: " + str(similarity));

 return similarity;

 # example wrapper code

 def main (sqlQueryA, sqlQueryB):

 import math;

 edgesA = buildEdgeArray (sqlQueryA);

 edgesB = buildEdgeArray (sqlQueryB);

 cubeA = buildAdjacencyCube (edgesA, edgesB, "A");

 cubeB = buildAdjacencyCube (edgesA, edgesB, "B");

 similarity = calculateQuerySimilarity (cubeA, cubeB);

 return similarity;

Code Listing 2: Python implementation of Algorithm 2

from similarity_functions import * # this is our similarity function code

import psycopg2 # connect to PostgreSQL

import time # standard library

connect to the PgSQL DB

conn = psycopg2.connect("<credentials>")

testsetdb = conn.cursor()

testsetdb.execute('SELECT rid, stmt, alt FROM testdataraw ORDER BY rid;')

testset = testsetdb.fetchall();

for each query in the cache (sqlQueryB), run similarity function

for i in testset:

 print 'Processing test query ' + str(i[0]) + '...'

- 90 -

 sqlQueryA = i[1]

 querycachedb = conn.cursor()

 querycachedb.execute('SELECT queryid, querytextoriginal, queryweight

 FROM querycache ORDER BY queryid;')

 querycache = querycachedb.fetchall();

 querycachedb.close()

 comparison = []

 simErrorCount = 0

 print 'Assessing similarity of query against cached queries...'

 for j in querycache:

 sqlQueryB = j[1]

 try:

 similarity = main(sqlQueryA, sqlQueryB)

 except:

 simErrorCount += 1

 similarity = 0

 similarity = similarity * j[2] # query weight adjustment

 # store query ID and similarity in array

 comparison.append((j[0], similarity))

 print 'Total similarity errors: ' + str(simErrorCount)

 # lookup k

 print 'Fetching k value...' # we do this each time in case K changes

 kdb = conn.cursor()

 kdb.execute('SELECT k FROM k;')

 kval = kdb.fetchall();

 for k in kval:

 k = k[0]

 kdb.close()

Code Listing 3: Finding k-th similar queries to a given query

Fetch k nearest neighbours by similarity

 print 'Finding nearest neighbours...'

 comparison = sorted(comparison, key=lambda entity: entity[1], reverse=True) # sort

by similarity descending

 neighbours = comparison[:int(k)] # slice top k neighbours from list

 csv = ''

 for n in neighbours:

 csv = csv + str(n[0]) + ', ' # query id

 print 'Identified neighbour: query ' + str(n[0]) + ' with similarity score

' + str(n[1])

 csv = csv[:-2] # trim last comma and space

 # Fetch majority verdict of schema assignment from neighbours

 verdictdb = conn.cursor()

 sql = 'SELECT assignedschemaid FROM querycache WHERE queryid IN (' + csv + ')'

 verdictdb.execute(sql)

 verdict = verdictdb.fetchall()

 verdictdb.close()

 print 'Finding majority verdict...'

 base = 0

 alt = 0

 for p in verdict:

 if p[0] == 0:

 base += 1

 if p[0] == 1:

 alt += 1

 if base >= alt:

- 91 -

 verdict = 'base'

 if alt > base:

 verdict = 'alt'

 print 'Verdict: Execute against ' + verdict + '.'

 # Start query execution timer

 startTime = time.time()

 # Execute query and return results to caller

 print 'Executing query...'

 sql = ''

 executeWrapper = conn.cursor()

 if verdict == 'base':

 sql = [i[1]]

 if verdict == 'alt':

 sql = [i[2]]

 executeWrapper.callproc('runQuery', sql)

 executeWrapper.execute('commit')

 executeWrapper.close()

 # Stop query execution timer

 stopTime = time.time()

 duration = stopTime - startTime

 print 'Query executed in ' + str(duration) + ' seconds.'

 # Write query, alt query (if applicable), neighbour query IDs and

 # execution time to state table for later async processing

 print 'Writing metadata to state table for asynchronous processing...'

 sql = "INSERT INTO queryqueue SELECT '" + i[1] + "', '" + i[2] + "', " + csv + ",

 " + str(duration)

 sql = [sql]

 addToQueue = conn.cursor()

 addToQueue.callproc('RunQuery', sql)

 addToQueue.execute('commit')

 addToQueue.close()

Code Listing 4: Query table definitions

CREATE TABLE QueryCache (

 QueryID INTEGER NOT NULL PRIMARY KEY,

 QueryTextOriginal VARCHAR NOT NULL,

 QueryWeight DOUBLE PRECISION,

 AssignedSchemaID INT,

 QueryTextNew VARCHAR,

 LastExecutionDurationSeconds INT

)

CREATE TABLE K (

 K DOUBLE PRECISION

)

CREATE TABLE queryqueue (

 rid INT,

 querytextoriginal VARCHAR(1000),

 querytextnew VARCHAR(1000),

 n1 INT,

 n2 INT,

 n3 INT,

 lastexecutiondurationseconds DOUBLE PRECISION)

- 92 -

Code Listing 5: Adjusting query weightings

Open cursor over state table

import psycopg2

import time

from similarity_functions import *

conn = psycopg2.connect("<credentials>")

statetabledb = conn.cursor()

statetabledb.execute("SELECT rid, n1, n2, n3, lastexecutiondurationseconds FROM qu

eryqueue ORDER BY rid ASC;")

statetable = statetabledb.fetchall()

statetabledb.close()

For each neighbour selected for a query, fetch execution time

qc = conn.cursor()

qc.execute("SELECT k FROM k;")

k = qc.fetchall()

for m in k:

 k = m[0]

k = int(k)

for i in statetable:

 print 'Test query ' + str(i[0]) + ' had execution time : ' + str(i[4]) + '

seconds.'

Compare against execution time of test query

If neighbour ran slower, increase weighting by 0.1

If neighbour ran quicker, decrease weighting by 0.1, vice versa.

 for j in xrange(1, k + 1):

 print j

 reduceWeight = 0

 increaseWeight = 0

 sql = "SELECT lastexecutiondurationseconds FROM querycache WHERE q

ueryid = " + str(i[j])

 qc.execute(sql)

 exectime = qc.fetchall()

 for n in exectime:

 exectime = n[0]

 print 'Top matched query ' + str(i[j]) + ' executed in ' + str(exe

ctime) + ' seconds.'

 print 'Delta: ' + str((float(str(exectime)) - float(str(i[4])))) +

' seconds.'

 if (exectime - i[4]) < 0:

 reduceWeight = 1

 sql = 'UPDATE querycache SET queryweight = queryweight - 0

.1 WHERE queryid = ' + str(i[j])

 if (exectime - i[4]) > 0:

 increaseWeight = 1

 sql = 'UPDATE querycache SET queryweight = queryweight + 0

.1 WHERE queryid = ' + str(i[j])

 print ' '

 sql = [sql]

 qc.callproc('RunQuery', sql)

 qc.execute('commit')

 sql = 'DELETE FROM queryqueue WHERE rid = ' + str(i[0])

 sql = [sql]

 qc.callproc('RunQuery', sql)

- 93 -

 qc.execute('commit')

 print ' '

qc.close()

Code Listing 6: Creating and populating the Chicago data sub-schemas

CREATE TABLE chicagoCrimeTypeAlpha (

 rID integer,

 rCaseNumber varchar,

 rDate timestamp,

 rIUCR varchar,

 rPrimaryType varchar,

 rDescription varchar,

 rArrest boolean,

 rDomestic boolean,

 rFBICode varchar,

 rYear smallint,

 rUpdatedOn timestamp);

CREATE TABLE chicagoCrimeTypeBeta (

 LIKE chicagoCrimeTypeAlpha);

CREATE TABLE chicagoCrimeLocationAlpha (

 rID integer,

 rDate timestamp,

 rBlock varchar,

 rBeat varchar,

 rDistrict varchar,

 rWard integer,

 rCommunityArea varchar,

 rxCoordinate integer,

 ryCoordinate integer,

 rLatitude double precision,

 rLongitude double precision,

 rLocation varchar);

CREATE TABLE chicagoCrimeLocationBeta (

 LIKE chicagoCrimeLocationAlpha);

INSERT INTO chicagoCrimeTypeAlpha

 SELECT rID,

 rCaseNumber,

 rDate,

 rIUCR,

 rPrimaryType,

 rDescription,

 rArrest,

 rDomestic,

 rFBICode,

 rYear,

 rUpdatedOn

 FROM chicagoBase

 WHERE rDate <= (SELECT MIN(rDate) + (MAX(rDate) - MIN(rDate)) / 2 FROM chicagoBase)

INSERT INTO chicagoCrimeTypeBeta

 SELECT chicagoBase.rID,

 chicagoBase.rCaseNumber,

 chicagoBase.rDate,

 chicagoBase.rIUCR,

- 94 -

 chicagoBase.rPrimaryType,

 chicagoBase.rDescription,

 chicagoBase.rArrest,

 chicagoBase.rDomestic,

 chicagoBase.rFBICode,

 chicagoBase.rYear,

 chicagoBase.rUpdatedOn

 FROM chicagoBase

 LEFT JOIN chicagoCrimeTypeAlpha

 ON chicagoBase.rID = chicagoCrimeTypeAlpha.rID

 WHERE chicagoCrimeTypeAlpha.rID IS NULL

INSERT INTO chicagoCrimeLocationAlpha

 SELECT rID,

 rDate,

 rBlock,

 rBeat,

 rDistrict,

 rWard,

 rCommunityArea,

 rxCoordinate,

 ryCoordinate,

 rLatitude,

 rLongitude,

 rLocation

 FROM chicagoBase

 WHERE rDate <= (SELECT MIN(rDate) + (MAX(rDate) - MIN(rDate)) / 2 FROM chicagoBase)

INSERT INTO chicagoCrimeLocationBeta

 SELECT chicagoBase.rID,

 chicagoBase.rDate,

 chicagoBase.rBlock,

 chicagoBase.rBeat,

 chicagoBase.rDistrict,

 chicagoBase.rWard,

 chicagoBase.rCommunityArea,

 chicagoBase.rxCoordinate,

 chicagoBase.ryCoordinate,

 chicagoBase.rLatitude,

 chicagoBase.rLongitude,

 chicagoBase.rLocation

 FROM chicagoBase

 LEFT JOIN chicagoCrimeLocationAlpha

 ON chicagoBase.rID = chicagoCrimeLocationAlpha.rID

 WHERE chicagoCrimeLocationAlpha.rID IS NULL

Code Listing 7: Random SQL query generator

SET NOCOUNT ON

GO

DROP PROCEDURE IF EXISTS dbo.chicagoQueryGenerator

GO

CREATE PROCEDURE dbo.chicagoQueryGenerator

AS BEGIN

DECLARE @columnCount TINYINT

DECLARE @counter TINYINT = 0

DECLARE @thisColumn VARCHAR(255)

DECLARE @select VARCHAR(500) = 'SELECT '

- 95 -

DECLARE @used TABLE ([name] VARCHAR(255))

 SET @columnCount = CEILING((

 SELECT TOP 1 c.[column_id]

 FROM sys.columns c

 INNER JOIN sys.tables t ON c.object_id = t.object_id

 WHERE t.[name] = 'chicagobase'

 ORDER BY NEWID()) / 2.0)

 WHILE @counter < @columnCount

 BEGIN

 SET @thisColumn = (

 SELECT TOP 1 c.[name]

 FROM sys.columns c

 INNER JOIN sys.tables t ON c.object_id = t.object_id

 LEFT JOIN @used u ON c.[name] = u.[name]

 WHERE u.[name] IS NULL

 AND t.[name] = 'chicagobase'

 ORDER BY NEWID())

 INSERT INTO @used VALUES (@thisColumn)

 SET @select = @select + @thisColumn + ', '

 SET @counter += 1

 END

 SET @select = LEFT(@select, LEN(@select) - 1) + ' '

 DECLARE @from VARCHAR(500) = ' FROM chicagoBase' + ' '

 DECLARE @where VARCHAR(500) = 'WHERE (1=1)' + ' '

 -- pick a random number of where clauses, between 0 and 2

 DECLARE @numOfWheres TINYINT = (SELECT ABS(CHECKSUM(NEWID()) % 3))

 DECLARE @colName VARCHAR(255), @dType VARCHAR(255), @val VARCHAR(255)

 DECLARE @operator TINYINT, @letters TINYINT

 WHILE @numOfWheres > 0

 BEGIN

 -- pick a random column from the chicagoBase table

 SELECT @colName = c.[name], @dType = y.[name]

 FROM sys.columns c

 INNER JOIN sys.types y ON c.system_type_id = y.system_type_id

 WHERE c.object_id = OBJECT_ID('chicagoBase')

 AND c.column_id = (SELECT ABS(CHECKSUM(NEWID()) %

 (SELECT COUNT(*) FROM sys.columns c WHERE c.object_id =

OBJECT_ID('chicagoBase')) + 1)

)

 -- now select a random value corresponding to the datatype of the randomly

chosen column

 IF @dType = 'bit' SET @val = CAST(ABS(CHECKSUM(NEWID()) % 2) AS

VARCHAR(255))

 IF @dType LIKE ('%tinyint%') SET @val = CAST(ABS(CHECKSUM(NEWID()) % 255)

AS VARCHAR(255))

 IF @dType = 'datetime' SET @val = '''' + CONVERT(VARCHAR,

DATEADD(MINUTE,(ABS(CHECKSUM(NEWID())) % 2629800) * -1, GETDATE()), 120) + '''' -- any

time in last 5 years

 IF @dType IN ('decimal', 'numeric', 'float') SET @val =

CAST((ABS(CHECKSUM(NEWID())) % 5000) + ((ABS(CHECKSUM(NEWID())) % 100)/100.0) AS

VARCHAR(255))

 IF @dType IN ('varchar') BEGIN

 SET @val = ''

 SET @letters = ABS(CHECKSUM(NEWID())) % 10 + 1

 WHILE @letters > 0 BEGIN

 SET @val = @val + CHAR(ABS(CHECKSUM(NEWID())) % 26 + 96) --

up to 10 random lowercase ASCII characters

 SET @letters -= 1

- 96 -

 END

 SET @val = '''' + @val + ''''

 END

 -- construct the WHEREs

 SET @operator = ABS(CHECKSUM(NEWID())) % 4 + 1

 SET @where = @where + 'AND ' + @colName + ' ' +

 CASE WHEN @operator = 1 THEN '='

 WHEN @operator = 2 AND @val NOT LIKE ('%''%') THEN

'>'

 WHEN @operator = 2 AND @val LIKE ('%''%') THEN '='

 WHEN @operator = 3 AND @val NOT LIKE ('%''%') THEN

'<'

 WHEN @operator = 3 AND @val LIKE ('%''%') THEN '='

 WHEN @operator = 4 THEN '!=' END

 SET @where = @where + ' ' + @val + ' '

 SET @numOfWheres -= 1

 END

 -- remove the WHERE (1=1) placeholder

 IF @where NOT LIKE ('% AND %')

 SET @where = REPLACE(@where, 'WHERE (1=1) ', '')

 ELSE

 SET @where = REPLACE(@where, 'WHERE (1=1) AND', 'WHERE')

 -- concatenate into a statement

 DECLARE @output VARCHAR(1000) = @select + @from + ISNULL(@where,'') + ';'

 SELECT @output

 END

GO

Code Listing 8: Creating query mappings to alternative Chicago sub-schemas

-- function to transform a given query on the base schema into a 4-table schema

DECLARE @test VARCHAR(1000) = 'SELECT rLocation, rWard, rDescription, rLatitude FROM

chicagoBase WHERE rIUCR != ''iqfi'' ;'

SELECT * FROM dbo.chicagoQueryTransformer(@test)

DROP FUNCTION IF EXISTS dbo.chicagoQueryTransformer

GO

CREATE FUNCTION dbo.chicagoQueryTransformer (@inboundQuery VARCHAR(1000))

RETURNS @outputs TABLE (inboundQuery VARCHAR(1000), outboundQuery VARCHAR(1000))

AS BEGIN

 -- use flags to determine which shard and/or partition to use

 DECLARE @typeShardFlag BIT = 0, @locationShardFlag BIT = 0

 DECLARE @alphaPartitionFlag BIT = 0, @betaPartitionFlag BIT = 0

 DECLARE @rDateCount BIGINT, @medianDate DATETIME, @rDate DATETIME

 DECLARE @stringBash VARCHAR(1000), @outboundQuery VARCHAR(1000)

 SET @inboundQuery = REPLACE(@inboundQuery, ';', '') -- causes problems if we don't

remove

 -- determine the shard first

 IF @inboundQuery LIKE ('%rCaseNumber%')

 OR @inboundQuery LIKE ('%rIUCR%')

 OR @inboundQuery LIKE ('%rPrimaryType%')

 OR @inboundQuery LIKE ('%rDescription%')

- 97 -

 OR @inboundQuery LIKE ('%rArrest%')

 OR @inboundQuery LIKE ('%rDomestic%')

 OR @inboundQuery LIKE ('%rFBICode%')

 OR @inboundQuery LIKE ('%rUpdatedOn%')

 SET @typeShardFlag = 1

 IF @inboundQuery LIKE ('%rBlock%')

 OR @inboundQuery LIKE ('%rBeat%')

 OR @inboundQuery LIKE ('%rDistrict%')

 OR @inboundQuery LIKE ('%rWard%')

 OR @inboundQuery LIKE ('%rCommunityArea%')

 OR @inboundQuery LIKE ('%rxCoordinate%')

 OR @inboundQuery LIKE ('%ryCoordinate%')

 OR @inboundQuery LIKE ('%rLatitude%')

 OR @inboundQuery LIKE ('%rLongitude%')

 OR @inboundQuery LIKE ('%rLocation%')

 SET @locationShardFlag = 1

 -- now determine the partition, if we can

 -- if rDate is present as a predicate in the inbound query, check the median point

 -- this will tell us if we can use partition alpha or beta

 -- no rDate = both partitions

 IF @inboundQuery LIKE ('%WHERE%rDate%')

 BEGIN

 SET @rDateCount = (SELECT COUNT(*) from dbo.chicagoBase)

 SET @medianDate = (

 SELECT rDate FROM (

 SELECT ROW_NUMBER() OVER (ORDER BY rDate ASC) [rid],

rDate

 FROM dbo.chicagoBase) median

 WHERE rid = FLOOR(@rDateCount / 2))

 -- parse out the date from the inbound query string

 -- bit delicate, this

 SET @stringBash = SUBSTRING(@inboundQuery,

PATINDEX('%WHERE%',@inboundQuery), 1000)

 SET @stringBash = SUBSTRING(@stringBash, PATINDEX('%rDate[<>=!][1-2][0-

9][0-9][0-9]%', @stringBash), 38)

 SET @stringBash = REPLACE(@stringBash, '''', '')

 SET @stringBash = LTRIM(RTRIM(@stringBash))

 SET @stringBash = RIGHT(@stringBash, 19)

 IF ISDATE(@stringBash) = 1

 BEGIN

 SET @rDate = CAST(@stringBash AS DATETIME)

 IF @rDate <= @medianDate

 SET @alphaPartitionFlag = 1

 IF @rDate > @medianDate

 SET @betaPartitionFlag = 1

 END

 END

 IF @inboundQuery NOT LIKE ('%WHERE%rDate%')

 BEGIN

 SET @alphaPartitionFlag = 1

 SET @betaPartitionFlag = 1

 END

 -- now glue together a 4-table query based on flag status

 --0101 -- location shard, beta partition - no join, no union

 --0110 -- location shard, alpha partition - no join, no union

 --0111 -- location shard, both partitions - no join, union all

 --1001 -- type shard, beta partition - no join, no union

 --1010 -- type shard, alpha partition - no join, no union

 --1011 -- type shard, both partitions - no join, union all

 --1101 -- both shards, beta partition - join on id, no union

- 98 -

 --1110 -- both shards, alpha partition - join on id, no union

 --1111 -- all shards and partitions - join on id, union all

 IF @typeShardFlag = 0 AND @locationShardFlag = 1 AND @alphaPartitionFlag = 0 AND

@betaPartitionFlag = 1

 SET @outboundQuery = REPLACE(@inboundQuery, 'chicagoBase',

'chicagoCrimeLocationBeta')

 IF @typeShardFlag = 0 AND @locationShardFlag = 1 AND @alphaPartitionFlag = 1 AND

@betaPartitionFlag = 0

 SET @outboundQuery = REPLACE(@inboundQuery, 'chicagoBase',

'chicagoCrimeLocationAlpha')

 IF @typeShardFlag = 0 AND @locationShardFlag = 1 AND @alphaPartitionFlag = 1 AND

@betaPartitionFlag = 1

 BEGIN

 SET @outboundQuery = REPLACE(@inboundQuery, 'chicagoBase',

'chicagoCrimeLocationAlpha')

 SET @outboundQuery = @outboundQuery + 'UNION ALL ' + CHAR(13) + CHAR(10) +

 REPLACE(@outboundQuery, 'chicagoCrimeLocationAlpha',

'chicagoCrimeLocationBeta')

 END

 IF @typeShardFlag = 1 AND @locationShardFlag = 0 AND @alphaPartitionFlag = 0 AND

@betaPartitionFlag = 1

 SET @outboundQuery = REPLACE(@inboundQuery, 'chicagoBase',

'chicagoCrimeTypeBeta')

 IF @typeShardFlag = 1 AND @locationShardFlag = 0 AND @alphaPartitionFlag = 1 AND

@betaPartitionFlag = 0

 SET @outboundQuery = REPLACE(@inboundQuery, 'chicagoBase',

'chicagoCrimeTypeAlpha')

 IF @typeShardFlag = 1 AND @locationShardFlag = 0 AND @alphaPartitionFlag = 1 AND

@betaPartitionFlag = 1

 BEGIN

 SET @outboundQuery = REPLACE(@inboundQuery, 'chicagoBase',

'chicagoCrimeTypeAlpha')

 SET @outboundQuery = @outboundQuery + 'UNION ALL ' + CHAR(13) + CHAR(10) +

 REPLACE(@outboundQuery, 'chicagoCrimeTypeAlpha',

'chicagoCrimeTypeBeta')

 END

 IF @typeShardFlag = 1 AND @locationShardFlag = 1 AND @alphaPartitionFlag = 0 AND

@betaPartitionFlag = 1

 SET @outboundQuery = REPLACE(@inboundQuery, 'chicagoBase',

 'chicagoCrimeTypeBeta a INNER JOIN chicagoCrimeLocationBeta b ON a.rid =

b.rid')

 IF @typeShardFlag = 1 AND @locationShardFlag = 1 AND @alphaPartitionFlag = 1 AND

@betaPartitionFlag = 0

 SET @outboundQuery = REPLACE(@inboundQuery, 'chicagoBase',

 'chicagoCrimeTypeAlpha a INNER JOIN chicagoCrimeLocationAlpha b ON a.rid =

b.rid')

 IF @typeShardFlag = 1 AND @locationShardFlag = 1 AND @alphaPartitionFlag = 1 AND

@betaPartitionFlag = 1

 BEGIN

 SET @outboundQuery = REPLACE(@inboundQuery, 'chicagoBase',

 'chicagoCrimeTypeBeta a INNER JOIN chicagoCrimeLocationBeta b ON a.rid =

b.rid')

 SET @outboundQuery = @outboundQuery + 'UNION ALL ' + CHAR(13) + CHAR(10) +

 REPLACE(@outboundQuery, 'chicagoCrimeTypeBeta a INNER JOIN

chicagoCrimeLocationBeta b ON a.rid = b.rid',

 'chicagoCrimeLocationBeta a INNER JOIN chicagoCrimeLocationBeta b

ON a.rid = b.rid')

 END

 -- DEAL WITH THE WHERES, APPEARING EACH SIDE OF THE UNION ALLS

 -- set up outputs table

 INSERT INTO @outputs

- 99 -

 SELECT @inboundQuery, @outboundQuery

 RETURN

END

Code Listing 9: Example call to generate random SQL queries

SET NOCOUNT ON

DECLARE @loopCounter SMALLINT = 1000

DECLARE @results TABLE (stmt VARCHAR(1000))

WHILE @loopCounter > 0 BEGIN

 INSERT INTO @results

 EXEC dbo.chicagoQueryGenerator

 SET @loopCounter -= 1

END

DECLARE @allresults TABLE (stmt VARCHAR(1000), alt VARCHAR(1000))

INSERT INTO @allresults

 SELECT r.stmt, a.outboundQuery

 FROM @results r

 CROSS APPLY dbo.chicagoQueryTransformer (r.stmt) a

SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) [rid], stmt, alt FROM @allresults

Code Listing 10: Testing the similarity scoring mechanism

testOutcomes = [];

sqlQueryA = "SELECT A.x, B.x FROM A INNER JOIN B ON A.x = B.x;"

sqlQueryB = "SELECT A.x, B.x FROM A INNER JOIN B ON A.x = B.x;"

similarity = main(sqlQueryA, sqlQueryB);

testOutcomes.append(["Set 1", similarity]);

sqlQueryA = "SELECT A.x, B.y FROM B INNER JOIN A ON A.z = B.z;"

sqlQueryB = "SELECT A.x, B.z FROM B INNER JOIN A ON A.z = B.z;"

similarity = main(sqlQueryA, sqlQueryB);

testOutcomes.append(["Set 2", similarity]);

sqlQueryA = "SELECT A.x, A.y, A.z FROM A INNER JOIN B ON A.y = B.y;"

sqlQueryB = "SELECT B.x FROM A INNER JOIN B ON A.y = B.y WHERE A.x = 10;"

similarity = main(sqlQueryA, sqlQueryB);

testOutcomes.append(["Set 3", similarity]);

sqlQueryA = "SELECT A.x FROM A INNER JOIN B ON A.x = B.x WHERE B.y > 100;"

sqlQueryB = "SELECT B.y FROM A INNER JOIN B ON A.z = B.z WHERE A.z = 0;"

similarity = main(sqlQueryA, sqlQueryB);

testOutcomes.append(["Set 4", similarity]);

sqlQueryA = "SELECT A.x FROM A INNER JOIN B ON A.x = B.x WHERE A.x = 10;"

sqlQueryB = "SELECT C.x FROM C INNER JOIN D ON C.z = D.z WHERE D.z > 50;"

similarity = main(sqlQueryA, sqlQueryB);

testOutcomes.append(["Set 5", similarity]);

for i in testOutcomes:

 print(i);

- 100 -

Code Listing 11: Testing syntactic and functional validity

SET NOCOUNT ON

DECLARE @loopCounter SMALLINT = 100

DECLARE @results TABLE (stmt VARCHAR(1000))

WHILE @loopCounter > 0 BEGIN

 INSERT INTO @results

 EXEC dbo.chicagoQueryGenerator

 SET @loopCounter -= 1

END

DECLARE @allresults TABLE (stmt VARCHAR(1000), alt VARCHAR(1000))

INSERT INTO @allresults

 SELECT r.stmt, a.outboundQuery

 FROM @results r

 CROSS APPLY dbo.chicagoQueryTransformer (r.stmt) a

DROP TABLE IF EXISTS #finalresults

CREATE TABLE #finalresults (rid INT, stmt VARCHAR(1000), alt VARCHAR(1000), good BIT)

INSERT INTO #finalresults

 SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) [rid],

 stmt, alt, NULL

 FROM @allresults

DECLARE cur_ForEachQueryPair CURSOR LOCAL FAST_FORWARD FOR

 SELECT f.rid, f.stmt, f.alt

 FROM #finalresults f

 WHERE f.alt IS NOT NULL

 ORDER BY rid ASC

DECLARE @thisRid INT, @thisStmt NVARCHAR(1000), @thisAlt NVARCHAR(1000)

DECLARE @badFlag BIT = 0

OPEN cur_ForEachQueryPair

FETCH NEXT FROM cur_ForEachQueryPair INTO @thisRid, @thisStmt, @thisAlt

WHILE @@FETCH_STATUS = 0

BEGIN

 SET @badFlag = 0

 PRINT @thisStmt

 PRINT @thisAlt

 BEGIN TRY

 EXEC sp_executesql @thisStmt

 PRINT 'Good'

 END TRY

 BEGIN CATCH

 SET @badFlag = 1

 END CATCH

 BEGIN TRY

 EXEC sp_executesql @thisAlt

 PRINT 'Good'

 END TRY

 BEGIN CATCH

 SET @badFlag = 1

 PRINT 'Bad'

 END CATCH

 UPDATE #finalResults

 SET good =

 (SELECT CASE WHEN @badFlag = 0 THEN 1 ELSE 0 END)

 WHERE rid = @thisRid

 FETCH NEXT FROM cur_ForEachQueryPair INTO @thisRid, @thisStmt, @thisAlt

END

CLOSE cur_ForEachQueryPair

DEALLOCATE cur_ForEachQueryPair

- 101 -

SELECT good, COUNT(*)

FROM #finalresults f

GROUP BY good

- 102 -

Appendix E: Dynamic schemas – algorithms and code

This material supplements the presentation of the implementation of the dynamic schema

redefinition process described in Chapter 8.

E.1 Implementation of the query parser component

Algorithm:

Algorithm name: Query parser

Inputs: Query plan cache from RDBMS

Outputs: Progress log; global temporary tables ##cs and ##q

Notes: Progress logging takes place throughout and is omitted for clarity.

Let ##cs be a global temporary table containing cached query statistics.

Insert into ##cs the following values from the query cache, per query:

----|Plan handle,

----|Statement start offset,

----|Statement end offset,

----|Last logical reads,

----|Last elapsed time,

----|Query plan

Let ##q be a global temporary table containing derivatives (D) of query plan cache

details.

Insert into ##q the following values from the query cache, per query:

----|Plan handle,

----|Query text,

----|(D)Selection components of the query text,

----|(D)Non-selection components of the query text occurring after the selection

components,

----|Query use count

Using the query plan cache, update ##q with the latest use counts per query:

----|Joining on plan handle:

----|----|Update use counts in ##q with metric from plan cache.

For each row in ##q:

----|Where the query text is NOT LIKE ('%CREATE%PROCEDURE%') AND

----|Where the query text is NOT LIKE ('%CREATE%VIEW%')

----|----|Derive the attributes, data sources and predicates into separate columns in

##q:

----|----|----|Set ##q.attributes to a derived substring of ##q.attributes:

----|----|----|----|Set ##q.attributes to substring of ##q.attributes from char 1 to:

----|----|----|----|----|CASE WHEN ##q.attributes LIKE ('%FROM%')

----|----|----|----|----|----|Then from 1 to the beginning of the string 'FROM'

----|----|----|----|----|----|Else from 1 to 8000

----|----|----|Set ##q.data_sources to a derived substring of ##q.data_sources:

----|----|----|----|Set ##q.data_sources to substring of ##q.data_sources from char 1 to:

----|----|----|----|----|CASE WHEN ##q.data_sources LIKE ('%WHERE%')

----|----|----|----|----|----|Then from 1 to the beginning of the string 'WHERE'

----|----|----|----|----|----|Else from 1 to 8000

----|----|----|If ##q.predicates NOT LIKE the string ('%WHERE%')

----|----|----|----|Then set ##q.predicates to an empty string

----|----|----|----|Else nothing

For all rows in ##q:

----|Where the date_updated is not null AND

- 103 -

----|Where the date_updated is older than 1 day from today's date

----|----|Delete the row.

Code Listing:

SET NOCOUNT ON

DECLARE @LogMessage VARCHAR(MAX)

-- Dump the cached stats for later use - to work around cache flush

INSERT INTO ##cs (plan_handle, statement_start_offset, statement_end_offset,

 last_logical_reads, last_elapsed_time, query_plan)

 SELECT s.plan_handle, s.statement_start_offset, s.statement_end_offset,

 s.last_logical_reads, s.last_elapsed_time, q.query_plan

 FROM sys.dm_exec_query_stats s

 CROSS APPLY sys.dm_exec_text_query_plan (s.plan_handle,

s.statement_start_offset, s.statement_end_offset) q

-- Scan the plan cache for new queries

INSERT INTO ##q (plan_handle, query_text, attributes, datasources, predicates, usecounts)

 SELECT cp.plan_handle, t.[text],

 SUBSTRING(t.[text], CHARINDEX('SELECT', t.[text], 1), 8000),

 SUBSTRING((SUBSTRING(t.[text], CHARINDEX('SELECT', t.[text], 1),

8000)), CHARINDEX('FROM', SUBSTRING(t.[text], CHARINDEX('SELECT', t.[text], 1), 8000),

1), 8000),

 SUBSTRING(SUBSTRING((SUBSTRING(t.[text], CHARINDEX('SELECT',

t.[text], 1), 8000)), CHARINDEX('FROM', SUBSTRING(t.[text], CHARINDEX('SELECT', t.[text],

1), 8000), 1), 8000), CHARINDEX('WHERE', SUBSTRING((SUBSTRING(t.[text],

CHARINDEX('SELECT', t.[text], 1), 8000)), CHARINDEX('FROM', SUBSTRING(t.[text],

CHARINDEX('SELECT', t.[text], 1), 8000), 1), 8000), 1), 8000),

 cp.usecounts

 FROM sys.dm_exec_cached_plans cp

 OUTER APPLY sys.dm_exec_sql_text (cp.plan_handle) t

 LEFT JOIN ##q q ON cp.plan_handle = q.plan_handle

 WHERE q.plan_handle IS NULL

 AND t.[text] NOT LIKE ('%INSERT%')

 AND t.[text] NOT LIKE ('%UPDATE%')

 AND t.[text] NOT LIKE ('%DELETE%')

 AND t.[text] NOT LIKE ('%tpcc_queries%')

SET @LogMessage = 'Inserted ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' rows into ##q'

EXEC tpcc_queries.dbo.LogEntry

 @CallingScript = 'QueryParser',

 @CallingCode = 'Scan the plan cache for new queries',

 @LogMessage = @LogMessage

-- Update the queries table with the most current usecounts from the plan cache

UPDATE q

SET q.usecounts = cp.usecounts,

 q.date_updated = GETDATE()

FROM ##q q

INNER JOIN sys.dm_exec_cached_plans cp ON q.plan_handle = cp.plan_handle

SET @LogMessage = 'Updated ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' rows in ##q'

EXEC tpcc_queries.dbo.LogEntry

 @CallingScript = 'QueryParser',

 @CallingCode = 'Update the queries table with the most current usecounts

from the plan cache',

 @LogMessage = @LogMessage

-- Separate out the top-level attributes, data sources and predicates into separate

columns.

- 104 -

-- Where this is a CREATE PROCEDURE/VIEW statement (i.e. executing an SP/view), start

from the end of BEGIN.

UPDATE q

SET q.attributes = SUBSTRING(q.attributes, 1, CASE WHEN q.attributes LIKE

('%FROM%') THEN CHARINDEX('FROM', q.attributes, 1) ELSE 8000 END - 1),

 q.datasources = SUBSTRING(q.datasources, 1, CASE WHEN q.datasources LIKE

('%WHERE%') THEN CHARINDEX('WHERE', q.datasources, 1) ELSE 8000 END - 1),

 q.predicates = CASE WHEN q.predicates NOT LIKE ('%WHERE%') THEN '' ELSE

q.predicates END

FROM ##q q

WHERE q.query_text NOT LIKE ('%CREATE%PROCEDURE%')

AND q.query_text NOT LIKE ('%CREATE%VIEW%')

UPDATE q

SET q.attributes = SUBSTRING(q.attributes, CHARINDEX('BEGIN', q.attributes,

1) + 5, CASE WHEN q.attributes LIKE ('%FROM%') THEN CHARINDEX('FROM', q.attributes, 1)

ELSE 8000 END - 1),

 q.datasources = SUBSTRING(q.datasources, 1, CASE WHEN q.datasources LIKE

('%WHERE%') THEN CHARINDEX('WHERE', q.datasources, 1) ELSE 8000 END - 1),

 q.predicates = CASE WHEN q.predicates NOT LIKE ('%WHERE%') THEN '' ELSE

q.predicates END

FROM ##q q

WHERE q.query_text LIKE ('%CREATE%PROCEDURE%')

OR q.query_text LIKE ('%CREATE%VIEW%')

-- Delete entries in ##q that haven't been updated in 24 hours.

-- This cascades into the other tables through separate scripts.

DELETE q

FROM ##q q

WHERE q.date_updated IS NOT NULL

AND q.date_updated < DATEADD(DAY, -1, GETDATE())

SET @LogMessage = 'Deleted ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' rows from ##q'

EXEC tpcc_queries.dbo.LogEntry

 @CallingScript = 'QueryParser',

 @CallingCode = 'Delete entries in ##q that haven''t been updated in 24

hours.',

 @LogMessage = @LogMessage

E.2 Temporary table creation

No algorithm supplied (none required).

Code Listing:

-- Variant to create if not exists (for SQL Agent job)

IF NOT EXISTS (SELECT name FROM tempdb.sys.tables WHERE name LIKE ('%##q%'))

BEGIN

 CREATE TABLE ##q (

 plan_handle VARBINARY(8000) NOT NULL,

 date_created DATETIME DEFAULT GETDATE() NOT NULL,

 date_updated DATETIME DEFAULT GETDATE(),

 usecounts BIGINT NOT NULL,

 query_text VARCHAR(MAX),

 attributes VARCHAR(MAX),

 datasources VARCHAR(MAX),

- 105 -

 predicates VARCHAR(MAX),

 suitable_candidate BIT,

 grouped_predicates VARCHAR(MAX),

 CONSTRAINT pk_q_plan_handle PRIMARY KEY (plan_handle)

)

 EXEC tpcc_queries.dbo.LogEntry

 @CallingScript = 'CreateGlobalTemporaryTables',

 @CallingCode = 'CREATE TABLE ##q',

 @LogMessage = 'Created table.'

END

IF NOT EXISTS (SELECT name FROM tempdb.sys.tables WHERE name LIKE ('%##q_mv_link%'))

BEGIN

 CREATE TABLE ##q_mv_link (

 mv_link_id INT IDENTITY(1,1) NOT NULL,

 plan_handle VARBINARY(8000),

 mv_id INT,

 new_query_text VARCHAR(MAX),

 new_plan_handle VARBINARY(8000),

 date_created DATETIME DEFAULT GETDATE() NOT NULL,

 date_updated DATETIME DEFAULT GETDATE(),

 original_query_cost NUMERIC(24,5),

 original_query_read_count BIGINT,

 original_query_rows BIGINT,

 original_query_columns BIGINT,

 original_query_data_points AS original_query_rows * original_query_columns,

 original_query_efficiency NUMERIC(24,5),

 new_query_cost NUMERIC(24,5),

 new_query_read_count BIGINT,

 new_query_rows BIGINT,

 new_query_columns BIGINT,

 new_query_data_points AS new_query_rows * new_query_columns,

 new_query_efficiency NUMERIC(24,5),

 cost_delta NUMERIC(24,5),

 efficiency_delta NUMERIC(24,5),

 CONSTRAINT mv_link_id PRIMARY KEY (mv_link_id),

 CONSTRAINT fk_plan_handle FOREIGN KEY (plan_handle)

 REFERENCES ##q (plan_handle),

 CONSTRAINT fk_mv_id FOREIGN KEY (mv_id) REFERENCES ##mv (mv_id)

)

 EXEC tpcc_queries.dbo.LogEntry

 @CallingScript = 'CreateGlobalTemporaryTables',

 @CallingCode = 'CREATE TABLE ##q_mv_link',

 @LogMessage = 'Created table.'

END

IF NOT EXISTS (SELECT name FROM tempdb.sys.tables WHERE name LIKE ('%##mv%'))

BEGIN

 CREATE TABLE ##mv (

 mv_id INT IDENTITY(1,1) PRIMARY KEY NOT NULL,

 associated_view_definition VARCHAR(8000),

 attributes_datasources_predicates

 AS SUBSTRING(associated_view_definition,

 CHARINDEX('AS', associated_view_definition, 1) + 2,

LEN(associated_view_definition)),

 mv_implemented BIT,

 has_indexed_view BIT

)

 EXEC tpcc_queries.dbo.LogEntry

 @CallingScript = 'CreateGlobalTemporaryTables',

 @CallingCode = 'CREATE TABLE ##mv',

 @LogMessage = 'Created table.'

- 106 -

END

IF NOT EXISTS (SELECT name FROM tempdb.sys.tables WHERE name LIKE ('%##b%'))

BEGIN

 CREATE TABLE ##b (

 query VARCHAR(8000))

 EXEC tpcc_queries.dbo.LogEntry

 @CallingScript = 'CreateGlobalTemporaryTables',

 @CallingCode = 'CREATE TABLE ##b',

 @LogMessage = 'Created table.'

END

IF NOT EXISTS (SELECT name FROM tempdb.sys.tables WHERE name LIKE ('%##cs%'))

BEGIN

 CREATE TABLE ##cs (

 plan_handle VARBINARY(64),

 statement_start_offset INT,

 statement_end_offset INT,

 last_logical_reads BIGINT,

 last_elapsed_time BIGINT,

 query_plan NVARCHAR(MAX)

)

 EXEC tpcc_queries.dbo.LogEntry

 @CallingScript = 'CreateGlobalTemporaryTables',

 @CallingCode = 'CREATE TABLE ##cs',

 @LogMessage = 'Created table.'

END

GO

E.3 Implementation of the analyse M Vs/use metadata component

Algorithm:

Algorithm name: Create and destroy MVs

Inputs: Global temporary tables ##q, ##mv, ##mv_link and local temporary table #g

Outputs: Local temporary table #g, altered entries in tables ##q, ##mv, ##mv_link, plus

MVs to DB

Notes: Loops are differentiated from set-based operations by using For each/For all

syntax.

Remove own queries from global temporary table ##q:

----|Delete rows from ##q where:

----|----|Query text LIKE ('%##q%') OR

----|----|Query text LIKE ('%##mv%') OR

----|----|Query text LIKE ('%#g) OR

----|----|Query text LIKE ('%tpcc_queries%')

Remove queries with CROSS JOINs from scope:

----|Delete rows from ##q where:

----|----|Query text includes the string 'CROSS JOIN'

Remove MVs no longer present in ##q together with their table entries:

----|Set @count = 0

- 107 -

----|For each query q in table ##mv, anti-joining on ##q:

----|----|Replace 'CREATE' with 'DROP', resulting in derived query D(q)

----|----|Replace CR/LF line endings with blank strings

----|----|Increment @count

----|----|Execute the derived query D(q)

----|Delete all rows from ##mv where:

----|----|There exists companion rows in ##mv_link, joining on plan_handle AND

----|----|There does not exist companion rows in ##q, anti-joining on plan handle.

----|Delete all rows from ##mv_link where:

----|----|There do not exist companion rows in ##mv, anti-joining on plan handle.

----|For all rows in ##mv_link:

----|----|Get the max mv_link_id identifier grouped by plan handle and mv_id identifier

----|----|Delete all rows from ##mv_link not in the resulting query set.

----|

Begin parsing/MV creation process:

----|Set variable @c = 0----|

----|Remove nested queries from scope:

----|----|For each row in a subset of table ##q including the following columns:

----|----|Plan handle,

----|----|Use counts,

----|----|Query text,

----|----|Attributes,

----|----|Data sources,

----|----|Predicates----|

----|----|

----|----|Do:

----|----|----|If attributes substring of the row in position 7 to 8000 LIKE '%SELECT%'

----|----|----|----|OR attributes substring of the row in position 7 to 8000 LIKE '%FROM%'

----|----|----|----|OR attributes substring of the row in position 7 to 8000 LIKE

'%WHERE%'

----|----|----|Then

----|----|----|----|Set suitable_candidate attribute of ##q = 0

----|----|----|If data sources substring of the row in position 5 to 8000 LIKE '%SELECT%'

----|----|----|----|OR data sources substring of the row in position 5 to 8000 LIKE

'%FROM%'

----|----|----|----|OR data sources substring of the row in position 5 to 8000 LIKE

'%WHERE%'

----|----|----|Then

----|----|----|----|Set suitable_candidate attribute of ##q = 0

----|----|----|If predicates substring of the row in position 6 to 8000 LIKE '%SELECT%'

----|----|----|----|OR predicates substring of the row in position 6 to 8000 LIKE '%FROM%'

----|----|----|----|OR predicates substring of the row in position 6 to 8000 LIKE

'%WHERE%'

----|----|----|Then

----|----|----|----|Set suitable_candidate attribute of ##q = 0

----|----|

----|----|Remove nested system functions from scope:

----|----|----|If data sources column LIKE ('%(%)%')

----|----|----|Then set suitable_candidate attribute of ##q = 0

----|----|

----|----|Check data sources exist and remove from scope if none:

----|----|----|If data sources column length = 0 or null:

----|----|----|Then set suitable_candidate attribute of ##q = 0

----|----|

----|----|Group identical queries with differing predicates:

----|----|----|If there exist rows in ##q with identical attributes to this attribute AND

----|----|----|If there exist rows in ##q with identical data sources to this data source

AND

----|----|----|If there exist rows in ##q with different predicates to this predicate

----|----|----|Then

----|----|----|----|Compile this predicate with delimiter | to existing predicates

----|----|----|----|Update ##q with new predicate value

----|----|

----|----|If the query at hand is not marked as suitable, mark as suitable:

- 108 -

----|----|----|For the first query in ##q with the same plan handle as the one in hand AND

----|----|----|Where this query has suitable_candidate = 0

----|----|----|----|Update ##q and set suitable_candidate = 1 for this plan handle.

Define empty variable @predicateList.

For all distinct data sources in ##q:

----|Where predicates exist AND

----|Where suitable_candidate = 1 AND

----|Where predicates are not grouped (grouped_predicates is null)

----|Do:

----|----|For all distinct predicates in ##q:

----|----|----|Where the data source matches the data source at hand AND

----|----|----|Suitable candidate = 1 AND

----|----|----|The predicate is not empty

----|----|Do:

----|----|----|If @predicateList is empty

----|----|----|Then set @predicateList = the distinct predicate at hand

----|----|----|Else append a comma (,) and the distinct predicate at hand to

@predicateList

----|----|

----|----|Set @predicateList = grouped_predicates from ##q

----|----|Where ##q.data_source matches the data source at hand

----|----|And the predicate exists

----|----|And suitable_candidate = 1

----|----|

----|Set @predicateList to an empty string

Remove all queries against system databases from scope:

----|Delete from ##q where:

----|----|Query text LIKE(<name of system database(s) as applicable>)

----|----|*Repeat as necessary

----|----|

If local temporary table #g exists:

----|Drop table #g

Let #g be a local temporary table with columns described as:

----|Plan handle,

----|Attributes,

----|Original attributes,

----|Data sources,

----|Predicates,

----|Original predicates,

Populate #g with all entries from ##q, mapping as follows:

----|(#g)Plan handle <- (##q) Plan handle,

----|(#g)Attributes <- (##q) Attributes,

----|(#g)Original attributes <- (##q) Attributes,

----|(#g)Data sources <- (##q) Data sources,

----|(#g)Predicates <- (##q) Predicates,

----|(#g)Original predicates <- (##q) Predicates

----|Where:

----|----|suitable_candidate = 1

Group queries by same data sources and attributes:

----|Declare empty variable @thisAttributesSplit

----|Declare empty variable @thisAttributes

----|For each distinct data source in #g:

----|----|Create comma-separated list of all #g.attributes, set @thisAttributes to this

list.

----|Deduplicate @thisAttributes:

----|----|For each comma-separated item in @thisAttributes,

----|----|----|Identify first instance of item

----|----|----|Remove all other identical items

- 109 -

----|----|Set @thisAttributesSplit to the new deduplicated comma-separated list.

----|----|Update #g with attributes = @thisAttributesSplit for the distinct data source at

hand.

For both attribute and original_attribute in #g:

----|Do:

----|Alias each attribute with its own three-part reference:

----|----|For each plan handle, attributes in #g:

----|----|----|For each distinct item in attributes in #g:

----|----|----|----|Replace the word 'SELECT' with an empty string

----|----|----|----|Replace [,], (,) characters with an empty string

----|----|----|----|Trim the item to all leftmost characters - 1

----|----|----|----|Add [] to the outside of the item

----|----|----|Write all items back to the attributes column in #g, CSV separated

For all rows in #g:

----|If data source is not prepended with 'dbo' AND

----|If data source is not a two-part name (contains .)

----|Then update #g, prepending 'dbo.' to data source.

----|

For all rows in #g where query_text contains 'JOIN':

----|If data source is not prepended with 'dbo' AND

----|If data source is not a two-part name (contains .)

----|Then update #g, prepending 'JOIN dbo.' to data source.

----|

For all rows in #g:

----|Replace 'dbo. ' substrings in the data sources column with the string 'dbo.'

----|

For each distinct datasource in #g:

----|Replace all AND with OR (for maximal coverage of conditions)

----|Deduplicate predicates (use same pattern as for data sources)

----|

For all rows in #g:

----|Replace 'WHERE OR' substrings in the predicates column with the string 'OR WHERE'

For all rows in #g:

----|Insert into table ##mv as associated view definition:

----|----|String 'CREATE VIEW <<NEWID>> WITH SCHEMABINDING AS ' (or RDBMS equivalent) PLUS

----|----|g.attributes + ' ' + g.data_sources + ' ' + g.predicates

----|Where:

----|----|The view does not already exist in ##mv

----|----|

Deduplicate ##mv:

----|For all rows, fetch max mv_id, grouping on all non-key columns

----|Delete all rows from ##mv not in this set.

----|

For all rows in ##mv:

----|Update string <<NEWID>> in attributes with NEWID() system function output or

equivalent.

----|

(errata): Fix codepage issues:

----|Replace '&%' patterns with equivalent <, >, <=, >= primitives in ##mv columns.

For all rows in ##mv:

----|Insert into ##mv_link:

----|----|mv.mv_id, g.plan_handle, PLUS

----|----|(g.original_attributes, substring(13 to 37) mv.associated_view_definition PLUS

----|----|g.original_predicates) PLUS

----|----|Current date/time.

----|----|Where:

----|----|----|Link does not currently exist matching this AVD and mv_id.

(errata): Fix double dbo issue

----|Replace 'dbo.dbo' pattern with 'dbo' in all associated_view_definitions

- 110 -

For all rows in ##mv_link:

----|Set original_query_columns to substrings of query_text, reflecting attributes.

For each MV, check MV parses and executes correctly:

----|For all rows in ##mv

----|Where mv_implemented = 0:

----|----|Construct dynamic CREATE VIEW statement

----|----|Try:

----|----|----|Execute statement

----|----|----|Update mv_implemented = 1 in ##mv

----|----|Catch:

----|----|----|Update mv_implemented = 0 in ##mv

----|----|----|

Materialise the views with clustered indexes:

----|For all rows in ##mv

----|Where has_indexed_view = 0

----|Do:

----|----|Construct string CREATE UNIQUE CLUSTERED INDEX (or equivalent) PLUS

----|----|View name (replacing '-' string with an empty string) PLUS

----|----|'ON' + first column of materialised view.

----|

----|----|Try:

----|----|----|Execute the string.

----|----|----|Update ##mv with has_indexed_view = 1

----|----|Catch:

----|----|----|Construct DROP VIEW statement for view.

----|----|----|Execute DROP VIEW statement.

----|----|----|Construct CREATE TABLE statement replacing view.

----|----|----|Try:

----|----|----|----|Execute CREATE TABLE statement.

----|----|----|----|Update has_indexed_view = 1

----|----|----|Catch:

----|----|----|----|Do nothing.

For all rows in ##mv_link:

----|Add [] brackets to predicates in column predicates to avoid parsing issues.

----|

(errata): String replacements of ##mv_link.new_query_text to fix XML codepage issues.

Code Listing:

USE tpcc

SET NOCOUNT ON

SET QUOTED_IDENTIFIER ON

DECLARE @count INT = 0

DECLARE @LogMessage VARCHAR(MAX)

-- Get the original query cost, the original query read count and original query rows.

Update ##q_mv_link.

DECLARE cur_ForEachQuery CURSOR LOCAL FAST_FORWARD FOR

 SELECT link.mv_link_id

 FROM ##q q

 INNER JOIN ##q_mv_link link ON q.plan_handle = link.plan_handle

 INNER JOIN ##mv mv ON link.mv_id = mv.mv_id

-- WHERE mv.mv_implemented = 1

DECLARE @thisLinkID INT, @thisEstimatedCost NUMERIC(26,10)

DECLARE @results TABLE (

 plan_handle VARBINARY(8000),

 last_logical_reads BIGINT,

- 111 -

 estimated_cost NUMERIC(26,10),

 estimated_rows FLOAT)

OPEN cur_ForEachQuery

FETCH NEXT FROM cur_ForEachQuery INTO @thisLinkID

WHILE @@FETCH_STATUS = 0

BEGIN

 DELETE FROM @results

 ;WITH XMLNAMESPACES (DEFAULT

N'http://schemas.microsoft.com/sqlserver/2004/07/showplan'),

 PlanText AS (SELECT CAST(cs.query_plan AS XML) AS QueryPlan,

 cs.last_logical_reads,

 cs.plan_handle

 FROM ##cs cs

 INNER JOIN ##q_mv_link link ON cs.plan_handle =

link.plan_handle

 WHERE link.mv_link_id = @thisLinkID

),

 PlanElements AS (

 SELECT PlanText.plan_handle,

 PlanText.QueryPlan,

 PlanText.last_logical_reads,

 RelOp.pln.value(N'@EstimatedTotalSubtreeCost', N'float') AS EstimatedCost,

 RelOp.pln.value(N'@EstimateRows', N'float') AS EstimateRows,

 RelOp.pln.value(N'@NodeId', N'integer') AS NodeId

 FROM PlanText

 CROSS APPLY

PlanText.QueryPlan.nodes(N'//RelOp')RelOp(pln)

)

 INSERT INTO @results (plan_handle, last_logical_reads, estimated_cost,

estimated_rows)

 SELECT e.plan_handle, e.last_logical_reads, e.EstimatedCost,

e.EstimateRows

 FROM PlanElements e

 WHERE e.NodeId = 0

 BEGIN TRY

 UPDATE link

 SET link.original_query_cost = CAST(r.estimated_cost AS

NUMERIC(24,5)),

 link.original_query_rows = r.estimated_rows,

 link.original_query_read_count = r.last_logical_reads

 FROM ##q_mv_link link

 INNER JOIN @results r ON link.plan_handle = r.plan_handle

 WHERE link.mv_link_id = @thisLinkID

 AND link.original_query_cost IS NULL

-- to prevent overwriting previously-captured costs

 OR link.original_query_rows IS NULL

 SET @count += @@ROWCOUNT

 END TRY

 BEGIN CATCH

 PRINT 'Something went wrong updating the usage metadata.

 Dumping @result to console...'

 SELECT * FROM @results

 END CATCH

 FETCH NEXT FROM cur_ForEachQuery INTO @thisLinkID

END

CLOSE cur_ForEachQuery

DEALLOCATE cur_ForEachQuery

- 112 -

SET @LogMessage = 'Updated a total of ' + CAST(@count AS VARCHAR(15)) + ' entries in

##q_mv_link'

EXEC tpcc_queries.dbo.LogEntry

 @CallingScript = 'AnalyseMVUseMetadata',

 @CallingCode = 'Update query performance metadata',

 @LogMessage = @LogMessage

-- For each new_query_text in ##q_mv_link where the original costs have been obtained,

execute the new query

-- then using the subsequent plan handle, query the DB stats to get the cost, rows, reads

required and calculate columns.

DECLARE cur_ForEachNewQuery CURSOR LOCAL FAST_FORWARD FOR

 SELECT mv_link_id, new_query_text

 FROM ##q_mv_link link

 WHERE link.original_query_cost IS NOT NULL

 AND link.new_query_cost IS NULL

DECLARE @thisMVLinkID INT, @thisNewQueryText NVARCHAR(MAX), @thisPlanHandle VARBINARY(MAX)

DECLARE @d NVARCHAR(MAX)

OPEN cur_ForEachNewQuery

FETCH NEXT FROM cur_ForEachNewQuery INTO @thisMVLinkID, @thisNewQueryText

WHILE @@FETCH_STATUS = 0

BEGIN

 BEGIN TRY

 PRINT 'Attempting to execute new query, ##mv_link_id = ' +

CAST(@thisMVLinkID AS VARCHAR(10)) + '...'

 EXEC sp_executesql @thisNewQueryText

 PRINT @thisNewQueryText

 PRINT 'Executed query.'

 -- get plan handle from cache

 SET @d = @thisNewQueryText

 exec sp_executesql @d

 SELECT @thisPlanHandle = COALESCE(cp.plan_handle, cp.parent_plan_handle)

 FROM sys.dm_exec_cached_plans cp

 CROSS APPLY sys.dm_exec_sql_text(plan_handle) t

 CROSS APPLY sys.dm_exec_query_plan(plan_handle) q

 WHERE t.[text] = @thisNewQueryText

 IF @thisPlanHandle IS NOT NULL

 BEGIN

 PRINT 'Found plan handle.'

 DELETE FROM @results

 ;WITH XMLNAMESPACES (DEFAULT

N'http://schemas.microsoft.com/sqlserver/2004/07/showplan'),

 PlanText AS (SELECT CAST(q.query_plan AS XML) AS QueryPlan,

 s.last_logical_reads,

 s.plan_handle

 FROM sys.dm_exec_query_stats s

 CROSS APPLY sys.dm_exec_text_query_plan

(s.plan_handle, s.statement_start_offset, s.statement_end_offset) q

 WHERE s.plan_handle = @thisPlanHandle

),

 PlanElements AS (

 SELECT PlanText.plan_handle,

 PlanText.QueryPlan,

 PlanText.last_logical_reads,

 RelOp.pln.value(N'@EstimatedTotalSubtreeCost', N'float') AS EstimatedCost,

 RelOp.pln.value(N'@EstimateRows', N'float') AS EstimateRows,

 RelOp.pln.value(N'@NodeId',

N'integer') AS NodeId

 FROM PlanText

- 113 -

 CROSS APPLY

PlanText.QueryPlan.nodes(N'//RelOp')RelOp(pln)

)

 INSERT INTO @results (plan_handle, last_logical_reads,

estimated_cost, estimated_rows)

 SELECT e.plan_handle, e.last_logical_reads,

e.EstimatedCost, e.EstimateRows

 FROM PlanElements e

 WHERE e.NodeId = 0

 IF @@ROWCOUNT > 0

 PRINT 'Found query metadata.'

 ELSE

 PRINT 'Did NOT find query metadata.'

 UPDATE link

 SET link.new_plan_handle = @thisPlanHandle,

 link.new_query_cost = CAST(r.estimated_cost AS

NUMERIC(24,5)),

 link.new_query_rows = r.estimated_rows,

 link.new_query_read_count = r.last_logical_reads

 FROM ##q_mv_link link

 INNER JOIN @results r ON @thisPlanHandle = r.plan_handle

 WHERE link.mv_link_id = @thisMVLinkID

 PRINT 'Updated ##q_mv_link table with ' + CAST(@@ROWCOUNT AS VARCHAR(10)) +

' row.'

 END

 END TRY

 BEGIN CATCH

 PRINT ERROR_MESSAGE()

 END CATCH

 SET @thisPlanHandle = NULL

 FETCH NEXT FROM cur_ForEachNewQuery INTO @thisMVLinkID, @thisNewQueryText

END

CLOSE cur_ForEachNewQuery

DEALLOCATE cur_ForEachNewQuery

-- Finally, calculate the query efficiencies and calculate the cost and efficiency deltas.

-- Efficiency as rows over reads as per document.

UPDATE link

SET link.original_query_efficiency =

 CAST((CAST(link.original_query_rows AS FLOAT) /

 CAST(CASE WHEN link.original_query_read_count = 0 THEN 1 ELSE

link.original_query_read_count END AS FLOAT))

 *100.0 AS NUMERIC(24,2)),

 link.new_query_efficiency =

 CAST((CAST(link.new_query_rows AS FLOAT) /

 CAST(CASE WHEN link.new_query_read_count = 0 THEN 1 ELSE

link.new_query_read_count END AS FLOAT))

 *100.0 AS NUMERIC(24,2))

FROM ##q_mv_link link

WHERE original_query_rows IS NOT NULL

AND original_query_read_count IS NOT NULL

AND new_query_rows IS NOT NULL

AND new_query_read_count IS NOT NULL

-- Cap off the efficiencies at 100% (for cases where fewer reads required than rows

returned).

UPDATE link

SET link.original_query_efficiency =

 CASE WHEN original_query_efficiency > 100 THEN 100.0 ELSE

original_query_efficiency END,

 link.new_query_efficiency =

- 114 -

 CASE WHEN new_query_efficiency > 100 THEN 100.0 ELSE

new_query_efficiency END

FROM ##q_mv_link link

UPDATE link

SET link.cost_delta = new_query_cost - original_query_cost,

 link.efficiency_delta = new_query_efficiency - original_query_efficiency

FROM ##q_mv_link link

-- Destroy any MVs extant in the DB that aren't listed in the ##mv table

DECLARE cur_ForEachView CURSOR LOCAL FAST_FORWARD FOR

 SELECT v.name

 FROM tpcc.sys.views v

 LEFT JOIN ##mv mv

 ON v.[name] =

LTRIM(RTRIM(REPLACE(REPLACE(LEFT(mv.associated_view_definition, 50), 'CREATE VIEW [', ''),

']', '')))

 WHERE LTRIM(RTRIM(REPLACE(REPLACE(LEFT(mv.associated_view_definition, 50),

'CREATE VIEW [', ''), ']', ''))) IS NULL

DECLARE @thisView VARCHAR(255)

DECLARE @dSQL NVARCHAR(MAX)

SET @count = 0

OPEN cur_ForEachView

FETCH NEXT FROM cur_ForEachView INTO @thisView

WHILE @@FETCH_STATUS = 0

BEGIN

 SET @dSQL = 'DROP VIEW [' + @thisView + ']'

 BEGIN TRY

 EXEC tpcc..sp_executesql @dSQL

 SET @count += 1

 END TRY

 BEGIN CATCH

 END CATCH

 FETCH NEXT FROM cur_ForEachView INTO @thisView

END

CLOSE cur_ForEachView

DEALLOCATE cur_ForEachView

SET @LogMessage = 'Dropped ' + CAST(@count AS VARCHAR(15)) + ' MVs that no longer exist in

##mv'

EXEC tpcc_queries.dbo.LogEntry

 @CallingScript = 'AnalyseMVUseMetadata',

 @CallingCode = 'Drop extant MVs',

 @LogMessage = @LogMessage

- 115 -

E.4 Implementation of the create and destroy M Vs component

Algorithm:

Algorithm name: Analyse MV / Use Metadata

Inputs: RDBMS query plan cache, ##mv, ##mv_link, ##q global temporary tables

Outputs: Updated performance info. in ##mv_link, dropped MVs in DB

Declare a local temporary table @result with columns as follows:

----|Plan handle,

----|Last logical reads,

----|Estimated cost,

----|Estimated rows

For each query present in ##mv/##mv_link joined on mv_id:

----|Delete contents of @results

----|*Parse query plan from query plan cache using XML document definition:

----|----|Insert the following fields into @results from the output parse:

----|----|----|Plan handle, last logical reads,

----|----|----|Estimated cost, estimated rows.

Update ##mv link with the data mapped as follows, keyed on plan_handle:

----|(@mv_link)Original query cost <- (@results)Estimated cost

----|(@mv_link)Original query read count <- (@results)Last logical reads

----|(@mv_link)Original query rows <- (@results)Estimated rows

----|Where:

----|----|(@mv_link) Query cost is null OR ** (@mv_link) Query rows is null

For each query in ##mv_link where costs were successfully obtained:

----|Execute new query ##mv_link.new_query_text

----|Fetch query execution statistics using process marked as * through to ** above.

Calculate query statistic deltas (efficiency E):

----|For all rows in ##mv_link:

----|----|Update original_query_efficiency:

----|----|----|Set to original_query_rows / (min: 1)(original_query_read_count)

----|----|Update new_query_efficiency:

----|----|----|Set to new_query_rows / (min:1) (new_query_read_count)

----|----|Where:All columns as above exist.

For all rows in ##mv_link:

----|Where reads < rows returned (due to RDBMS efficiencies/caching):

----|----|Set original|new query efficiency = 1

----|Set cost delta = new - original query cost

----|Set efficiency delta = new - original query efficiency

Destroy any extant MVs:

----|For all MVs existing in the DB:

----|----|Anti-join to ##mv table

----|----|If not exists, drop MV

Code Listing:

USE tpcc

SET NOCOUNT ON

DECLARE @dSQL NVARCHAR(MAX)

DECLARE @LogMessage VARCHAR(MAX)

- 116 -

-- Remove own queries

DELETE q

FROM ##q q

WHERE q.query_text LIKE ('%##q%')

OR q.query_text LIKE ('%##mv%')

OR q.query_text LIKE ('%#g %')

OR q.query_text LIKE ('%tpcc_queries%')

-- Remove queries with CROSS JOINs - hangs the process

DELETE q

FROM ##q q

WHERE q.query_text LIKE ('%CROSS%JOIN%')

SET @LogMessage = 'Deleted ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' rows from ##q'

EXEC tpcc_queries.dbo.LogEntry

 @CallingScript = 'CreateAndDestroyMVs',

 @CallingCode = 'Remove own queries',

 @LogMessage = @LogMessage

-- Remove MVs no longer present in ##q together with their table entries

--SET @dSQL = N''

--DECLARE cur_ForEachMVToDelete CURSOR LOCAL FAST_FORWARD FOR

-- SELECT REPLACE(LEFT(mv.associated_view_definition, 50), 'CREATE', 'DROP')

-- FROM ##mv mv

-- INNER JOIN ##q_mv_link link ON mv.mv_id = link.mv_id

-- LEFT JOIN ##q q ON link.plan_handle = q.plan_handle

-- WHERE q.plan_handle IS NULL

DECLARE @count INT = 0

--OPEN cur_ForEachMVToDelete

--FETCH NEXT FROM cur_ForEachMVToDelete INTO @dSQL

--WHILE @@FETCH_STATUS = 0

--BEGIN

-- BEGIN TRY

-- SET @dSQL = REPLACE(REPLACE(@dSQL, CHAR(13), ''), CHAR(10), '')

-- PRINT @dSQL

-- PRINT '.'

-- EXEC tpcc..sp_executesql @dSQL

-- SELECT @@ROWCOUNT

-- SET @count += 1

-- END TRY

-- BEGIN CATCH

-- END CATCH

-- FETCH NEXT FROM cur_ForEachMVToDelete INTO @dSQL

--END

--CLOSE cur_ForEachMVToDelete

--DEALLOCATE cur_ForEachMVToDelete

--SET @LogMessage = 'Dropped ' + CAST(@count AS VARCHAR(15)) + ' MVs'

--EXEC tpcc_queries.dbo.LogEntry

-- @CallingScript = 'CreateAndDestroyMVs',

-- @CallingCode = 'Remove MVs no longer present in ##q',

-- @LogMessage = @LogMessage

--DELETE mv

--FROM ##mv mv

--INNER JOIN ##q_mv_link link ON mv.mv_id = link.mv_id

--LEFT JOIN ##q q ON link.plan_handle = q.plan_handle

--WHERE q.plan_handle IS NULL

--SET @LogMessage = 'Deleted ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' entries from ##mv'

--EXEC tpcc_queries.dbo.LogEntry

-- @CallingScript = 'CreateAndDestroyMVs',

-- @CallingCode = 'Remove MVs no longer present in ##q',

-- @LogMessage = @LogMessage

- 117 -

--DELETE link

--FROM ##q_mv_link link

--LEFT JOIN ##mv mv ON link.mv_id = mv.mv_id

--WHERE mv.mv_id IS NULL

---- delete duplicates

--;WITH distincts AS (

-- SELECT MAX(mv_link_id) [max], plan_handle, mv_id

-- FROM ##q_mv_link

-- GROUP BY plan_handle, mv_id)

--DELETE link

--FROM ##q_mv_link link

--LEFT JOIN distincts d ON link.mv_link_id = d.[max]

--WHERE d.[max] IS NULL

--SET @LogMessage = 'Deleted ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' entries from

##q_mv_link'

--EXEC tpcc_queries.dbo.LogEntry

-- @CallingScript = 'CreateAndDestroyMVs',

-- @CallingCode = 'Remove MVs no longer present in ##q',

-- @LogMessage = @LogMessage

-- Start query parsing

DECLARE cur_ForEachNinQ CURSOR LOCAL FAST_FORWARD FOR

 -- Can modify with TOP N PERCENT

 SELECT plan_handle, usecounts, query_text, attributes, datasources, predicates

 FROM ##q q

 WHERE suitable_candidate IS NULL

 ORDER BY q.usecounts DESC

DECLARE @thisPlanHandle VARBINARY(8000), @thisUsecounts BIGINT, @thisQueryText

VARCHAR(MAX)

DECLARE @thisAttributes VARCHAR(MAX), @thisDatasources VARCHAR(MAX), @thisPredicates

VARCHAR(MAX)

DECLARE @c INT = 0

OPEN cur_ForEachNInQ

FETCH NEXT FROM cur_ForEachNInQ INTO @thisPlanHandle, @thisUseCounts, @thisQueryText,

@thisAttributes, @thisDatasources, @thisPredicates

WHILE @@FETCH_STATUS = 0

BEGIN

 -- Does query match standard SELECT, FROM, WHERE?

 -- First check if there is nesting - remove these from scope

 IF SUBSTRING(@thisAttributes, 7, 8000) LIKE ('%SELECT%')

 OR SUBSTRING(@thisAttributes, 7, 8000) LIKE ('%FROM%')

 OR SUBSTRING(@thisAttributes, 7, 8000) LIKE ('%WHERE%')

 UPDATE ##q SET suitable_candidate = 0 WHERE plan_handle =

@thisPlanHandle

 IF SUBSTRING(@thisDatasources, 5, 8000) LIKE ('%SELECT%')

 OR SUBSTRING(@thisDatasources, 5, 8000) LIKE ('%FROM%')

 OR SUBSTRING(@thisDatasources, 5, 8000) LIKE ('%WHERE%')

 UPDATE ##q SET suitable_candidate = 0 WHERE plan_handle =

@thisPlanHandle

 IF SUBSTRING(@thisPredicates, 6, 8000) LIKE ('%SELECT%')

 OR SUBSTRING(@thisPredicates, 6, 8000) LIKE ('%FROM%')

 OR SUBSTRING(@thisPredicates, 6, 8000) LIKE ('%WHERE%')

 UPDATE ##q SET suitable_candidate = 0 WHERE plan_handle =

@thisPlanHandle

 -- Now check if there is any use of system functions in the datasources - remove

from scope

 IF @thisDatasources LIKE ('%(%)%')

 UPDATE ##q SET suitable_candidate = 0 WHERE plan_handle =

@thisPlanHandle

 -- Check that we have, at least, a FROM clause - exclude any queries with no

explicit datasources (like SELECT 1)

 IF @thisDatasources IS NULL OR LEN(@thisDatasources) = 0

- 118 -

 UPDATE ##q SET suitable_candidate = 0 WHERE plan_handle =

@thisPlanHandle

 -- Do there exist identical queries with different predicates in ##q? If so group

them up with pipe delimitation.

 SELECT @c = COUNT(*) FROM (

 SELECT q.attributes, q.datasources

 FROM ##q q

 WHERE q.attributes = @thisAttributes

 AND q.datasources = @thisDatasources

 AND ISNULL(q.predicates,'') != ISNULL(q.predicates,''))

x

 IF @c > 1

 BEGIN

 UPDATE q

 SET q.grouped_predicates =

ISNULL(q.grouped_predicates,'') + '|' + q.predicates

 FROM ##q q

 WHERE plan_handle = @thisPlanHandle

 END

 -- If the query isn't already marked as unsuitable, mark as suitable

 IF (SELECT TOP 1 suitable_candidate FROM ##q WHERE plan_handle =

@thisPlanHandle) IS NULL

 BEGIN

 UPDATE q SET q.suitable_candidate = 1 FROM ##q q WHERE

q.plan_handle = @thisPlanHandle

 END

 FETCH NEXT FROM cur_ForEachNInQ INTO @thisPlanHandle, @thisUseCounts,

@thisQueryText, @thisAttributes, @thisDatasources, @thisPredicates

END

CLOSE cur_ForEachNinQ

DEALLOCATE cur_ForEachNinQ

-- Where the data sources are identical, group the predicates and apply to all

grouped_predicates

DECLARE cur_ForEachDistinctDatasource CURSOR LOCAL FAST_FORWARD FOR

 SELECT DISTINCT q.datasources

 FROM ##q q

 WHERE q.predicates != ''

 AND q.suitable_candidate = 1

 AND q.grouped_predicates IS NULL

DECLARE @thisDS VARCHAR(MAX), @predicateList VARCHAR(MAX) = ''

OPEN cur_ForEachDistinctDatasource

FETCH NEXT FROM cur_ForEachDistinctDatasource INTO @thisDS

WHILE @@FETCH_STATUS = 0

BEGIN

 ;WITH predicates AS (

 SELECT DISTINCT q.predicates [p]

 FROM ##q q

 WHERE q.datasources = @thisDS

 AND q.predicates != ''

 AND q.suitable_candidate = 1

)

 SELECT @predicateList =

 CASE WHEN @predicateList = ''

 THEN predicates.p

 ELSE @predicateList + COALESCE(', ' + predicates.p, '')

 END

 FROM predicates

 UPDATE q

 SET q.grouped_predicates = @predicateList

 FROM ##q q

 WHERE q.datasources = @thisDS

 AND q.predicates != ''

 AND q.suitable_candidate = 1

- 119 -

 SET @predicateList = ''

 FETCH NEXT FROM cur_ForEachDistinctDatasource INTO @thisDS

END

CLOSE cur_ForEachDistinctDatasource

DEALLOCATE cur_ForEachDistinctDatasource

-- Now remove all queries from system datasources from scope

DELETE q

FROM ##q q

WHERE q.datasources LIKE ('%master.%')

OR q.datasources LIKE ('%model.%')

OR q.datasources LIKE ('%msdb.%')

OR q.datasources LIKE ('%tempdb.%')

SET @LogMessage = 'Deleted ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' entries from ##q'

EXEC tpcc_queries.dbo.LogEntry

 @CallingScript = 'CreateAndDestroyMVs',

 @CallingCode = 'Remove all queries from system datasources from scope',

 @LogMessage = @LogMessage

DROP TABLE IF EXISTS #g

CREATE TABLE #g (plan_handle VARBINARY(MAX), attributes VARCHAR(MAX),

original_attributes VARCHAR(MAX),

 datasources VARCHAR(MAX), predicates VARCHAR(MAX),

original_predicates VARCHAR(MAX))

INSERT INTO #g (plan_handle, attributes, original_attributes, datasources, predicates,

original_predicates)

 SELECT q.plan_handle, q.attributes, q.attributes, q.datasources, q.predicates,

q.predicates

 FROM ##q q

 WHERE q.suitable_candidate = 1

SET @LogMessage = 'Inserted ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' entries into #g'

EXEC tpcc_queries.dbo.LogEntry

 @CallingScript = 'CreateAndDestroyMVs',

 @CallingCode = 'Identify suitable queries from ##q into #g',

 @LogMessage = @LogMessage

-- b) group queries by same datasources

-- for each distinct datasource, aggregate the distinct attributes

DECLARE cur_ForEachDS CURSOR LOCAL FAST_FORWARD FOR

 SELECT DISTINCT g.datasources

 FROM #g g

SET @thisDS = ''

SET @thisAttributes = ''

DECLARE @thisAttributesSplit VARCHAR(MAX) = ''

OPEN cur_ForEachDS

FETCH NEXT FROM cur_ForEachDS INTO @thisDS

WHILE @@FETCH_STATUS = 0

BEGIN

 SELECT @thisAttributes = LEFT(x.attributes, LEN(x.attributes) - 1)

 FROM (

 SELECT g.attributes + ','

 FROM #g g

 WHERE g.datasources = @thisDS

 FOR XML PATH ('')) x (attributes)

 -- This results in a comma-separated list of non-distinct attributes in

@thisAttributes for @thisDS

 -- Now de-duplicate this list

 SET @thisAttributesSplit = ''

 ;WITH splits AS (

 SELECT DISTINCT s.[value]

- 120 -

 FROM string_split(@thisAttributes, ',') s)

 SELECT @thisAttributesSplit = LEFT(x.attributes, LEN(x.attributes) - 1)

 FROM (

 SELECT splits.[value] + ','

 FROM splits

 FOR XML PATH ('')) x (attributes)

 SET @thisAttributes = @thisAttributesSplit

 -- Now update #g with the new deduplicated list of attributes

 UPDATE g

 SET g.attributes = 'SELECT ' + REPLACE(REPLACE(@thisAttributes,

'SELECT', ''), CHAR(8), ' ')

 FROM #g g

 WHERE g.datasources = @thisDS

 SET @thisAttributes = ''

 SET @thisAttributesSplit = ''

 FETCH NEXT FROM cur_ForEachDS INTO @thisDS

END

CLOSE cur_ForEachDS

DEALLOCATE cur_ForEachDS

-- Now we need to alias each attribute to avoid column name collisions later when creating

MVs.

-- We string-split attributes by comma, ignoring the initial SELECT, append the alias as '

AS [alias]'

-- then glue everything back together again.

DECLARE cur_ForEachAttributes CURSOR LOCAL FAST_FORWARD FOR

 SELECT g.plan_handle, g.attributes

 FROM #g g

DECLARE @splits TABLE ([value] VARCHAR(MAX))

OPEN cur_ForEachAttributes

FETCH NEXT FROM cur_ForEachAttributes INTO @thisPlanHandle, @thisAttributes

WHILE @@FETCH_STATUS = 0

BEGIN

 INSERT INTO @splits

 SELECT DISTINCT value FROM string_split(@thisAttributes, ',')

 UPDATE @splits

 SET [value] = REPLACE([value], 'SELECT ', '')

 UPDATE @splits

 SET value = value + ' AS ' + '[' + REPLACE(REPLACE(REPLACE(value, '[',

''),']', ''),' ', '') + ']'

 SELECT @thisAttributes = LEFT(x.attributes, LEN(x.attributes) - 1)

 FROM (

 SELECT s.value + ','

 FROM @splits s

 FOR XML PATH ('')) x (attributes)

 SET @thisAttributes = 'SELECT ' + @thisAttributes

 UPDATE g

 SET g.attributes = @thisAttributes

 FROM #g g

 WHERE g.plan_handle = @thisPlanHandle

 DELETE FROM @splits

 FETCH NEXT FROM cur_ForEachAttributes INTO @thisPlanHandle, @thisAttributes

END

CLOSE cur_ForEachAttributes

DEALLOCATE cur_ForEachAttributes

-- Now we do it again for the original_attributes since the data source has changed.

DECLARE cur_ForEachAttributes CURSOR LOCAL FAST_FORWARD FOR

 SELECT g.plan_handle, g.original_attributes

 FROM #g g

- 121 -

DELETE FROM @splits

OPEN cur_ForEachAttributes

FETCH NEXT FROM cur_ForEachAttributes INTO @thisPlanHandle, @thisAttributes

WHILE @@FETCH_STATUS = 0

BEGIN

 INSERT INTO @splits

 SELECT DISTINCT value FROM string_split(@thisAttributes, ',')

 UPDATE @splits

 SET [value] = REPLACE([value], 'SELECT ', '')

 UPDATE @splits

 SET value = value + ' AS ' + '[' + REPLACE(REPLACE(REPLACE(value, '[',

''),']', ''),' ', '') + ']'

 SELECT @thisAttributes = LEFT(x.attributes, LEN(x.attributes) - 1)

 FROM (

 SELECT s.value + ','

 FROM @splits s

 FOR XML PATH ('')) x (attributes)

 SET @thisAttributes = 'SELECT ' + @thisAttributes

 UPDATE g

 SET g.original_attributes = @thisAttributes

 FROM #g g

 WHERE g.plan_handle = @thisPlanHandle

 DELETE FROM @splits

 FETCH NEXT FROM cur_ForEachAttributes INTO @thisPlanHandle, @thisAttributes

END

CLOSE cur_ForEachAttributes

DEALLOCATE cur_ForEachAttributes

-- schema binding fails if the datasources aren't in two-part names.

-- replace each datasource with dbo.<datasource> if it isn't already a two-part name i.e.

named schema.

-- address the simple case first, where FROM <word> exists, replace with FROM dbo.<word>

UPDATE g

SET g.datasources = REPLACE(g.datasources, 'FROM ', 'FROM dbo.')

FROM #g g

WHERE g.datasources NOT LIKE ('%.%') -- no dot therefore no joins

SET @LogMessage = 'Updated ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' entries in #g with two-

part names'

EXEC tpcc_queries.dbo.LogEntry

 @CallingScript = 'CreateAndDestroyMVs',

 @CallingCode = 'Update #g with two-part names - simple case',

 @LogMessage = @LogMessage

-- Now address the complex case.

-- Where exists a space + datasource name, this must be a table.

-- If JOINs are involved we can replace the JOIN with a JOIN + ' ' + 'dbo.'

-- Won't work for views involving multiple schemas but this is rare and out of scope for

PoC.

UPDATE g

SET g.datasources = REPLACE(REPLACE(g.datasources, 'JOIN', 'JOIN dbo.'),

'FROM', 'FROM dbo.')

FROM #g g

WHERE g.datasources LIKE ('%JOIN%')

SET @LogMessage = 'Updated ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' entries in #g with two-

part names'

EXEC tpcc_queries.dbo.LogEntry

 @CallingScript = 'CreateAndDestroyMVs',

 @CallingCode = 'Update #g with two-part names - JOIN case',

 @LogMessage = @LogMessage

- 122 -

UPDATE g

SET g.datasources = REPLACE(g.datasources, 'dbo. ', 'dbo.')

FROM #g g

WHERE g.datasources LIKE ('%dbo. %')

SET @LogMessage = 'Updated ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' entries in #g with two-

part names'

EXEC tpcc_queries.dbo.LogEntry

 @CallingScript = 'CreateAndDestroyMVs',

 @CallingCode = 'Update #g with two-part names - dbo. space case',

 @LogMessage = @LogMessage

-- for each distinct datasource, aggregate the predicates replacing all ANDs with ORs

-- as this will ensure 100% coverage of all predicates necessary for all queries for those

datasources

-- (performance issues could happen here)

-- store the original predicates in the g.original_predicates column for computation of

the new_query_text

DECLARE cur_ForEachDS CURSOR LOCAL FAST_FORWARD FOR

 SELECT DISTINCT g.datasources

 FROM #g g

SET @thisDS = ''

SET @thisPredicates = ''

DECLARE @thisPredicatesSplit VARCHAR(MAX) = ''

OPEN cur_ForEachDS

SET @count = 0

FETCH NEXT FROM cur_ForEachDS INTO @thisDS

WHILE @@FETCH_STATUS = 0

BEGIN

 SELECT @thisPredicates = LEFT(x.predicates, LEN(x.predicates) - 1)

 FROM (

 SELECT g.predicates + ','

 FROM #g g

 WHERE g.datasources = @thisDS

 FOR XML PATH ('')) x (predicates)

 -- This results in a comma-separated list of non-distinct predicates in

@thisPredicates for @thisDS

 -- Now de-duplicate this list

 SET @thisPredicatesSplit = ''

 ;WITH splits AS (

 SELECT DISTINCT s.[value]

 FROM string_split(@thisPredicates, ',') s)

 SELECT @thisPredicatesSplit = LEFT(x.predicates, LEN(x.predicates) - 1)

 FROM (

 SELECT splits.[value] + ','

 FROM splits

 FOR XML PATH ('')) x (predicates)

 SET @thisPredicates = @thisPredicatesSplit

 -- Now replace commas with OR statements as these are predicates

 SET @thisPredicates = REPLACE(@thisPredicates, ',', ' OR ')

 -- Now update #g with the new deduplicated list of predicates

 UPDATE g

 SET g.predicates = @thisPredicates

 FROM #g g

 WHERE g.datasources = @thisDS

 SET @count += 1

- 123 -

 SET @thisPredicates = ''

 SET @thisPredicatesSplit = ''

 FETCH NEXT FROM cur_ForEachDS INTO @thisDS

END

CLOSE cur_ForEachDS

DEALLOCATE cur_ForEachDS

SET @LogMessage = 'Updated ' + CAST(@count AS VARCHAR(15)) + ' entries in #g to

deduplicate predicates'

EXEC tpcc_queries.dbo.LogEntry

 @CallingScript = 'CreateAndDestroyMVs',

 @CallingCode = 'Predicate deduplication',

 @LogMessage = @LogMessage

-- Fix the 'WHERE OR' / 'OR WHERE' issue

UPDATE g

SET g.predicates = REPLACE(g.predicates, 'WHERE OR', 'OR')

FROM #g g

UPDATE g

SET g.predicates = REPLACE(g.predicates, 'OR WHERE', 'OR')

FROM #g g

UPDATE g

SET g.predicates = 'WHERE ' + RIGHT(g.predicates,LEN(g.predicates) - 2)

FROM #g g

WHERE LEFT(LTRIM(g.predicates), 2) = 'OR'

UPDATE g

SET g.predicates = REPLACE(g.predicates, 'WHERE R', 'WHERE')

FROM #g g

-- for each resulting distinct expression in #g, script it as an MV if it doesn't already

exist

INSERT INTO ##mv (associated_view_definition)

 SELECT DISTINCT CAST('CREATE VIEW [<<NEWID>>] WITH SCHEMABINDING AS ' +

 g.attributes + ' ' + g.datasources + ' ' +

g.predicates AS VARCHAR(8000))

 FROM #g g

 LEFT JOIN ##mv mv ON (g.attributes + ' ' + g.datasources + ' ' + g.predicates) =

 REPLACE(RIGHT(mv.associated_view_definition, LEN(mv.associated_view_definition) -

73), 'ELECT', 'SELECT')

 WHERE REPLACE(RIGHT(mv.associated_view_definition,

LEN(mv.associated_view_definition) - 73), 'ELECT', 'SELECT') IS NULL

 AND ISNULL(mv.mv_implemented, 0) = 0

DECLARE @inserted INT = @@ROWCOUNT

-- deduplicate ##mv based on associated view definition - should solve the problem

DELETE mv

FROM ##mv mv

WHERE mv.mv_id NOT IN (

SELECT MAX(mv.mv_id)

FROM ##mv mv

GROUP BY SUBSTRING(mv.associated_view_definition, CHARINDEX('SELECT',

mv.associated_view_definition, 1), 8000))

DECLARE @deleted INT = @@ROWCOUNT

SET @LogMessage = 'Inserted ' + CAST(@inserted - @deleted AS VARCHAR(15)) + ' entries into

##mv'

EXEC tpcc_queries.dbo.LogEntry

 @CallingScript = 'CreateAndDestroyMVs',

- 124 -

 @CallingCode = 'Create new entries in ##mv if do not already exist',

 @LogMessage = @LogMessage

-- now create the newids

UPDATE mv

SET mv.associated_view_definition = REPLACE(mv.associated_view_definition,

'<<NEWID>>', NEWID())

FROM ##mv mv

SET @LogMessage = 'Updated ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' entries in ##mv'

EXEC tpcc_queries.dbo.LogEntry

 @CallingScript = 'CreateAndDestroyMVs',

 @CallingCode = 'Update the MV entries with new NEWID()s',

 @LogMessage = @LogMessage

-- fix a codepage issue

UPDATE mv

SET mv.associated_view_definition =

 REPLACE(REPLACE(associated_view_definition, '&lt;', '<'), '&gt;',

'>')

FROM ##mv mv

UPDATE g

SET g.predicates =

 REPLACE(REPLACE(predicates, '&lt;', '<'), '&gt;', '>')

FROM #g g

-- create the link entries, if they don't already exist

INSERT INTO ##q_mv_link (mv_id, plan_handle, new_query_text, date_created)

 SELECT mv.mv_id, g.plan_handle,

 g.original_attributes + ' ' +

 --g.attributes + ' ' +

 'FROM ' +

 SUBSTRING(mv.associated_view_definition, 13, 37) + ']' +

 --g.predicates [new_query_text],

 g.original_predicates [new_query_text], -- trial to test

performance improvement.

 GETDATE()

 FROM ##mv mv

 INNER JOIN #g g

 ON LTRIM(RTRIM(mv.attributes_datasources_predicates)) =

 LTRIM(RTRIM(g.attributes + ' ' + g.datasources + ' ' + g.predicates))

SET @LogMessage = 'Inserted ' + CAST(@@ROWCOUNT AS VARCHAR(15)) + ' entries into

##q_mv_link'

EXEC tpcc_queries.dbo.LogEntry

 @CallingScript = 'CreateAndDestroyMVs',

 @CallingCode = 'Create new entries in ##q_mv_link if do not already exist',

 @LogMessage = @LogMessage

-- clean up MV definition for double dbo issue

UPDATE mv

SET mv.associated_view_definition = REPLACE(mv.associated_view_definition,

'dbo.dbo.', 'dbo.')

FROM ##mv mv

-- clean up MV definition for OR/der issue

UPDATE mv

SET mv.associated_view_definition = REPLACE(mv.associated_view_definition, '

der', 'order')

FROM ##mv mv

-- Update the original query columns in ##q_mv_link

UPDATE link

- 125 -

SET link.original_query_columns =

 LEN(SUBSTRING(q.query_text, 1, CHARINDEX('FROM', q.query_text, 1))) -

 LEN(REPLACE(SUBSTRING(q.query_text, 1, CHARINDEX('FROM',

q.query_text, 1)), ',', '')) + 1

FROM ##q_mv_link link

INNER JOIN ##q q ON link.plan_handle = q.plan_handle

-- for each MV, check MV parses. Delete those that don't from both the link and mv

tables.

-- added top 1m clause to prevent performance hangs.

DECLARE cur_ForEachMV CURSOR LOCAL FAST_FORWARD FOR

 SELECT mv_id, mv.associated_view_definition

 FROM ##mv mv

 WHERE mv.mv_implemented IS NULL OR mv.mv_implemented = 0

DECLARE @thisMVID INT

DECLARE @thisView VARCHAR(MAX)

DECLARE @success BIT = 0

SET @count = 0

DECLARE @failedCount INT = 0

DECLARE @rcounts TABLE (r BIGINT)

OPEN cur_ForEachMV

FETCH NEXT FROM cur_ForEachMV INTO @thisMVID, @thisView

WHILE @@FETCH_STATUS = 0

BEGIN

 SET @dSQL = CAST(@thisView AS NVARCHAR(MAX))

 BEGIN TRY

 -- Bug fix: Remove accidental CROSS JOIN conditions.

 IF @dSQL LIKE ('%orders.o_w_id = customer.c_w_id%')

 OR @dSQL LIKE ('%history.h_c_w_id = customer.c_w_id%')

 OR @dSQL LIKE ('%new_order.no_w_id = orders.o_w_id%')

 BEGIN

 SET @success = 0

 END

 ELSE BEGIN

 -- First check the expected row count. If effectively a cross

join, abort.

 SET @dSQL = 'SELECT COUNT(*) FROM (' + SUBSTRING(@dSQL, 74, 8000)

+ ') X;'

 PRINT @dSQL

 INSERT INTO @rcounts

 EXEC tpcc..sp_executesql @dSQL

 IF (SELECT TOP 1 r FROM @rcounts) <= 1000000

 BEGIN

 PRINT 'View passed row check test. Proceeding to

create view...'

 SET @dSQL = CAST(@thisView AS NVARCHAR(MAX))

 PRINT @dSQL

 EXEC tpcc..sp_executesql @dSQL

 SET @success = 1

 SET @count += 1

 END

 ELSE BEGIN

 SET @success = 0

 END

 END

 END TRY

 BEGIN CATCH

 PRINT ERROR_MESSAGE()

 PRINT 'Failed to create MV.'

 SET @success = 0

 END CATCH

 IF @success = 1

 BEGIN

 PRINT 'Successfully created MV'

- 126 -

 UPDATE mv

 SET mv.mv_implemented = 1

 FROM ##mv mv

 WHERE mv.mv_id = @thisMVID

 END

 ELSE

 BEGIN

 SET @failedCount += 1

 DELETE FROM ##q_mv_link WHERE mv_id = @thisMVID

 DELETE FROM ##mv WHERE mv_id = @thisMVID

 END

 SET @success = 0

 DELETE FROM @rcounts

 FETCH NEXT FROM cur_ForEachMV INTO @thisMVID, @thisView

END

CLOSE cur_ForEachMV

DEALLOCATE cur_ForEachMV

SET @LogMessage = 'Created ' + CAST(@count AS VARCHAR(15)) + ' new MVs'

EXEC tpcc_queries.dbo.LogEntry

 @CallingScript = 'CreateAndDestroyMVs',

 @CallingCode = 'Create new MVs',

 @LogMessage = @LogMessage

SET @LogMessage = 'Failed to create ' + CAST(@failedCount AS VARCHAR(15)) + ' new MVs'

EXEC tpcc_queries.dbo.LogEntry

 @CallingScript = 'CreateAndDestroyMVs',

 @CallingCode = 'Create new entries in ##mv if do not already exist',

 @LogMessage = @LogMessage

-- Create the clustered indexes on all the views - this materialises them away from the

base tables.

-- Try the first column only.

SET @count = 0

SET @failedCount = 0

DECLARE cur_ForEachDistinctView CURSOR LOCAL FAST_FORWARD FOR

 SELECT DISTINCT v.name [viewname], mv.mv_id

 FROM tpcc.sys.views v

 -- Exclude those views already considered.

 INNER JOIN ##mv mv ON mv.associated_view_definition LIKE ('%' + v.[name] + '%')

 WHERE mv.has_indexed_view IS NULL

DECLARE @thisViewName VARCHAR(255) = ''

DECLARE @cName VARCHAR(255)

OPEN cur_ForEachDistinctView

FETCH NEXT FROM cur_ForEachDistinctView INTO @thisViewName, @thisMVID

WHILE @@FETCH_STATUS = 0

BEGIN

 SET @cName = (SELECT TOP 1 c.name

 FROM tpcc.sys.columns c

 INNER JOIN tpcc.sys.views v

 ON c.object_id = v.object_id

 WHERE column_id = 1

 AND v.[name] = @thisViewName)

 SET @dSQL = 'CREATE UNIQUE CLUSTERED INDEX rid_' + REPLACE(@thisViewName, '-', '')

+

 ' ON dbo.[' + @thisViewName + '] ([' + @cName + ']);'

 BEGIN TRY

 -- This will only succeed for views without dup keys, without LEFT/RIGHT

joins.

 -- The unindexed views will remain though, can address with other

strategies i.e. NCIXs.

 EXEC sp_executesql @dSQL

 UPDATE mv

- 127 -

 SET mv.has_indexed_view = 1

 FROM ##mv mv

 WHERE mv.associated_view_definition LIKE ('%' + @thisViewName + '%')

 SET @count += 1

 END TRY

 BEGIN CATCH

 PRINT ERROR_MESSAGE()

 PRINT 'Attempting to replace the view with a table...'

 BEGIN TRY

 SET @dSQL = 'DROP VIEW [' + @thisViewName + '];'

 EXEC tpcc..sp_executesql @dSQL

 SET @dSQL = (SELECT TOP 1 associated_view_definition FROM ##mv

WHERE mv_id = @thisMVID)

 SET @dSQL = REPLACE(@dSQL, 'CREATE VIEW ', 'SELECT * INTO ')

 SET @dSQL = REPLACE(@dSQL, 'WITH SCHEMABINDING AS', 'FROM (')

 SET @dSQL = @dSQL + ') X'

 PRINT @dSQL

 EXEC sp_executesql @dSQL

 END TRY

 BEGIN CATCH

 PRINT ERROR_MESSAGE()

 PRINT 'Table creation failed.'

 SET @failedCount += 1

 UPDATE mv

 SET mv.has_indexed_view = 0

 FROM ##mv mv

 WHERE mv.associated_view_definition LIKE ('%' + @thisViewName +

'%')

 END CATCH

 END CATCH

 FETCH NEXT FROM cur_ForEachDistinctView INTO @thisViewName, @thisMVID

END

CLOSE cur_ForEachDistinctView

DEALLOCATE cur_ForEachDistinctView

SET @LogMessage = 'Created ' + CAST(@count AS VARCHAR(15)) + ' new indexes on MVs'

EXEC tpcc_queries.dbo.LogEntry

 @CallingScript = 'CreateAndDestroyMVs',

 @CallingCode = 'Create new unique clustered indexes on MVs',

 @LogMessage = @LogMessage

SET @LogMessage = 'Failed to create ' + CAST(@failedCount AS VARCHAR(15)) + ' new indexes

on MVs'

EXEC tpcc_queries.dbo.LogEntry

 @CallingScript = 'CreateAndDestroyMVs',

 @CallingCode = 'Create new unique clustered indexes on MVs',

 @LogMessage = @LogMessage

-- For those that failed i.e. queries aren't suitable for indexed views, we can use

database tables in the same way.

-- Duplicates are allowed on those and we may still see better performance.

-- First drop the view, then recreate it as a table (SELECT TOP 0 * FROM <view> INTO

<table_renamed>, drop view, rename table)

-- The new_query_text then remains valid.

-- Consider how you will drop tables rather than views.

-- YOU ARE HERE

-- For queries in ##q_mv_link, update the new_query_text to use [alias] square brackets

for the predicates

-- else it won't parse as the datasource has changed to the MV.

- 128 -

DECLARE cur_ForEachNewQuery CURSOR LOCAL FAST_FORWARD FOR

 SELECT link.mv_link_id, link.new_query_text

 FROM ##q_mv_link link

OPEN cur_ForEachNewQuery

FETCH NEXT FROM cur_ForEachNewQuery INTO @thisMVID, @thisQueryText

WHILE @@FETCH_STATUS = 0

BEGIN

 DELETE FROM @splits

 INSERT INTO @splits

 SELECT [value] FROM string_split(@thisQueryText, ' ')

 UPDATE @splits SET [value] = '[' + [value] + ']' WHERE [value] LIKE ('%.%')

 SELECT @thisQueryText = x.querytext -- LEFT(x.querytext, LEN(x.querytext) - 1)

 FROM (

 SELECT s.value + ' '

 FROM @splits s

 FOR XML PATH ('')) x (querytext)

 UPDATE link

 SET link.new_query_text = @thisQueryText

 FROM ##q_mv_link link

 WHERE link.mv_link_id = @thisMVID

 FETCH NEXT FROM cur_ForEachNewQuery INTO @thisMVID, @thisQueryText

END

CLOSE cur_ForEachNewQuery

DEALLOCATE cur_ForEachNewQuery

-- Fix XML codepage issues in new_query_text

UPDATE link

SET link.new_query_text = REPLACE(REPLACE(REPLACE(link.new_query_text, '[[',

'['), ']]', ']'), ' ', ' ')

FROM ##q_mv_link link

UPDATE link

SET link.new_query_text = REPLACE(link.new_query_text, ',]', ', ')

FROM ##q_mv_link link

UPDATE link

SET link.new_query_text =

 REPLACE(REPLACE(REPLACE(REPLACE(link.new_query_text , '&lt;', '<'),

'&gt;', '>'), '<', '<'), '>', '>')

FROM ##q_mv_link link

UPDATE link

SET link.new_query_text = REPLACE(REPLACE(link.new_query_text, 'WHERE', ' WHERE

'), 'FROM', ' FROM ')

FROM ##q_mv_link link

-- the following addresses a bug with square brackets - a workaround, to be fixed

(string_split probably at fault).

UPDATE link

SET link.new_query_text = REPLACE(link.new_query_text, '],w', '], [w')

FROM ##q_mv_link link

UPDATE link

SET link.new_query_text = REPLACE(link.new_query_text, '],d', '], [d')

FROM ##q_mv_link link

UPDATE link

SET link.new_query_text = REPLACE(link.new_query_text, '],c', '], [c')

FROM ##q_mv_link link

UPDATE link

SET link.new_query_text = REPLACE(link.new_query_text, '],h', '], [h')

FROM ##q_mv_link link

UPDATE link

SET link.new_query_text = REPLACE(link.new_query_text, '],i', '], [i')

FROM ##q_mv_link link

UPDATE link

SET link.new_query_text = REPLACE(link.new_query_text, '],n', '], [n')

FROM ##q_mv_link link

UPDATE link

SET link.new_query_text = REPLACE(link.new_query_text, '],o', '], [o')

- 129 -

FROM ##q_mv_link link

UPDATE link

SET link.new_query_text = REPLACE(link.new_query_text, '],s', '], [s')

FROM ##q_mv_link link

/*

(runs as async process populates efficiency data)

 GROUP M.V.s AGAINST SUM OF EFFICIENCY DELTAS (WHERE EXIST) IN #MV

 WHERE SUM(EFFICIENCY DELTA) <=0, DROP M.V.

*/

-- TO ADD WHEN Analyse SCRIPT IS RUNNING

--;WITH inefficientMVs AS (

--SELECT link.mv_id, SUM(link.efficiency_delta) [overall_efficiency_delta]

--FROM ##q_mv_link link

--WHERE link.efficiency_delta IS NOT NULL

--GROUP BY link.mv_id)

--DELETE link

--FROM ##q_mv_link link

--INNER JOIN inefficientMVs ON link.mv_id = inefficientMVs.mv_id

--WHERE overall_efficiency_delta < 0

--DELETE mv

--FROM ##mv mv

--LEFT JOIN ##q_mv_link link ON mv.mv_id = link.mv_id

--WHERE link.mv_id IS NULL

---- SUMMARY FOR TESTING

--SELECT 'Queries in cache: ', COUNT(*) [count]

--FROM sys.dm_exec_cached_plans UNION ALL

--SELECT 'Queries in ##q: ', COUNT(*)

--FROM ##q UNION ALL

--SELECT 'Queries in #g: ', COUNT(*)

--FROM #g UNION ALL

--SELECT 'New MVs in ##mv: ', COUNT(*)

--FROM ##mv UNION ALL

--SELECT 'Links in ##q_mv_link: ', COUNT(*)

--FROM ##q_mv_link

--SELECT q.query_text, mv.associated_view_definition, link.new_query_text

--FROM ##q q

--INNER JOIN ##q_mv_link link ON q.plan_handle = link.plan_handle

--INNER JOIN ##mv mv ON link.mv_id = mv.mv_id

--TRUNCATE TABLE ##q_mv_link

--TRUNCATE TABLE ##mv

--TRUNCATE TABLE #g

- 130 -

E.5 Implementation of the Query Generator and Caller

(for Testing Purposes)

WHILE 1=1

BEGIN

-- INIT

DROP TABLE IF EXISTS #t

DROP TABLE IF EXISTS #c

DROP TABLE IF EXISTS #w

DROP TABLE IF EXISTS #p

DROP TABLE IF EXISTS #s

CREATE TABLE #t (tbl VARCHAR(255))

CREATE TABLE #c (col VARCHAR(255))

CREATE TABLE #w (col VARCHAR(255), y VARCHAR(255))

DECLARE @thisWCol VARCHAR(255), @thisWY VARCHAR(255)

CREATE TABLE #p (id TINYINT, primitive VARCHAR(15))

CREATE TABLE #s (id INT IDENTITY(1,1) PRIMARY KEY NOT NULL, s VARCHAR(MAX), f

VARCHAR(MAX), w VARCHAR(MAX))

INSERT INTO #p

 SELECT 1, '=' UNION ALL

 SELECT 2, '<' UNION ALL

 SELECT 3, '>' UNION ALL

 SELECT 4, '<=' UNION ALL

 SELECT 5, '>=' UNION ALL

 SELECT 6, '!=' UNION ALL

 SELECT 7, 'IS NULL' UNION ALL

 SELECT 8, 'IS NOT NULL'

DECLARE @dSQL NVARCHAR(MAX)

DECLARE @SelectStmt VARCHAR(MAX) = '', @FromStmt VARCHAR(MAX) = '', @WhereStmt

VARCHAR(MAX) = ''

DECLARE @randomPrim VARCHAR(15)

-- Get random number of user tables > 1 from tpcc in any order

SET @dSQL = N'

INSERT INTO #t

 SELECT TOP ' + CAST(ABS(CHECKSUM(NEWID())) % 8 + 2 AS CHAR(1)) +

 ' name FROM tpcc.sys.tables t WHERE t.type_desc = ''USER_TABLE'' ORDER BY

NEWID();'

EXEC sp_executesql @dSQL

-- for each table, fetch a random % of the columns into list #c

DECLARE cur_forEachTable CURSOR FAST_FORWARD FOR

 SELECT tbl FROM #t

DECLARE @thisT VARCHAR(255)

OPEN cur_forEachTable

FETCH NEXT FROM cur_forEachTable INTO @thisT

WHILE @@FETCH_STATUS = 0

BEGIN

 SET @dSQL = N'

 INSERT INTO #c (col)

 SELECT TOP ' + CAST(ABS(CHECKSUM(NEWID())) % 100 + 1 AS CHAR(3)) + '

PERCENT c.name

 FROM tpcc.sys.columns c INNER JOIN tpcc.sys.tables t ON c.object_id =

t.object_id

 WHERE t.name = ''' + @thisT + ''''

 EXEC sp_executesql @dSQL

 -- Convert column to comma-separated list

 -- Construct the SELECT statement for this table

 SELECT @SelectStmt = CASE

 WHEN @SelectStmt = ''

 THEN c.col

 ELSE @SelectStmt +

COALESCE(',' + c.col, '')

- 131 -

 END

 FROM #c c

 -- Construct the FROM statement

 SET @FromStmt = @thisT

 -- Construct the WHERE statement

 -- Get column datatypes

 SET @dSQL = N'

 INSERT INTO #w (col)

 SELECT TOP ' + CAST(ABS(CHECKSUM(NEWID())) % 100 + 1 AS CHAR(3)) + ' PERCENT

c.name

 FROM tpcc.sys.columns c INNER JOIN tpcc.sys.tables t ON c.object_id =

t.object_id

 WHERE t.name = ''' + @thisT + ''''

 EXEC sp_executesql @dSQL

 IF EXISTS (SELECT * FROM #w)

 UPDATE w

 SET w.y = y.[name]

 FROM tpcc.sys.columns c

 INNER JOIN tpcc.sys.types y ON c.system_type_id = y.system_type_id

 INNER JOIN #w w ON c.[name] = w.col

 INNER JOIN tpcc.sys.tables t ON c.object_id = t.object_id

 AND t.[name] = @thisT

 -- Constrict predicates to numerics, ints, bits

 DELETE FROM #w WHERE y NOT IN ('bigint','int','decimal','numeric','float','bit')

 -- Fully-qualify the predicates (not using aliases)

 UPDATE w SET w.col = @FromStmt + '.' + w.col FROM #w w

 IF EXISTS (SELECT * FROM #w)

 BEGIN

 DECLARE cur_ForEachWhere CURSOR LOCAL FAST_FORWARD FOR

 SELECT w.col, w.y

 FROM #w w

 OPEN cur_ForEachWhere

 FETCH NEXT FROM cur_ForEachWhere INTO @thisWCol, @thisWY

 WHILE @@FETCH_STATUS = 0

 BEGIN

 IF @WhereStmt = ''

 SET @WhereStmt = ''

 -- Get a random primitive

 SET @randomPrim = (SELECT TOP 1 p.primitive FROM #p p ORDER BY

NEWID())

 IF @randomPrim = 'IS NULL' OR @randomPrim = 'IS NOT NULL'

 SET @WhereStmt = @WhereStmt + @thisWCol + ' ' + @randomPrim

 ELSE BEGIN

 IF @thisWY = 'bit'

 SET @WhereStmt = @WhereStmt + @thisWCol + ' ' +

@randomPrim + ' ' + CAST(ABS(CHECKSUM(NEWID())) % 2 AS CHAR(1))

 IF @thisWY IN ('bigint', 'int')

 SET @WhereStmt = @WhereStmt + @thisWCol + ' ' +

@randomPrim + ' ' + CAST(ABS(CHECKSUM(NEWID())) % 10000 AS VARCHAR(30))

 IF @thisWY IN ('numeric','decimal')

 SET @WhereStmt = @WhereStmt + @thisWCol + ' ' +

@randomPrim + ' ' +

 CAST(ABS(CHECKSUM(NEWID())) % 10000 + 1 /

(ABS(CHECKSUM(NEWID())) % 10000 + 1) AS VARCHAR(30))

 END

 -- Random AND/OR selection

 SET @WhereStmt = @WhereStmt +

 CASE WHEN ABS(CHECKSUM(NEWID())) % 2 + 1 = 1 THEN ' AND '

ELSE ' OR ' END

- 132 -

 FETCH NEXT FROM cur_ForEachWhere INTO @thisWCol, @thisWY

 END

 CLOSE cur_ForEachWhere

 DEALLOCATE cur_ForEachWhere

 TRUNCATE TABLE #c

 TRUNCATE TABLE #w

 -- Fully-qualify the attributes (not using aliases)

 SET @SelectStmt = @FromStmt + '.' + REPLACE(@SelectStmt, ',', ', ' + @FromStmt +

'.')

 -- Trim the trailing AND/OR from the predicates

 SET @WhereStmt = CASE WHEN RIGHT(@WhereStmt, 4) = 'AND '

 THEN LEFT(@WhereStmt, LEN(@WhereStmt)

- 4)

 WHEN RIGHT(@WhereStmt, 4) = 'OR'

 THEN LEFT(@WhereStmt, LEN(@WhereStmt)

- 3)

 END

 -- Store the statements for later use

 INSERT INTO #s (s, f, w)

 SELECT @SelectStmt, @FromStmt, @WhereStmt

 SET @SelectStmt = ''

 SET @FromStmt = ''

 SET @WhereStmt = ''

 END

 FETCH NEXT FROM cur_forEachTable INTO @thisT

END

CLOSE cur_forEachTable

DEALLOCATE cur_forEachTable

-- Process above yields table #s with select, from, where clauses.

-- Now decide on a number of joins to use, from 0-5.

-- Uses the relationships specified by the TPC-C benchmark dataset documentation.

UPDATE s SET s.w = '' FROM #s s WHERE s.w IS NULL

DROP TABLE IF EXISTS #j

CREATE TABLE #j (id TINYINT, jointype VARCHAR(20))

DECLARE @joinChance NUMERIC(5,2)

INSERT INTO #j (id, jointype)

 -- Add entries into this table by frequency, which we'll use as weighting

 -- Cross joins are relatively rare so only 1/100 chance, others accordingly.

 -- No joins are ''

 SELECT TOP 33 ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) [id], 'INNER JOIN'

[jointype]

 FROM sys.objects

 UNION ALL

 SELECT TOP 33 ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) + 33 [id], 'LEFT

JOIN' [jointype]

 FROM sys.objects

 UNION ALL

 SELECT TOP 33 ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) + 66 [id], 'RIGHT

JOIN' [jointype]

 FROM sys.objects

 UNION ALL

 SELECT 100, 'CROSS JOIN'

-- Pick a JOIN to use. No join is a natural probability of no relationship existing.

DECLARE @thisJoin VARCHAR(20) = 'NONE'

SET @joinChance = (SELECT ABS(CHECKSUM(NEWID())) % 100 + 1)

- 133 -

 IF @joinChance <= 100

 SET @thisJoin = (SELECT jointype FROM #j WHERE id = @joinChance)

-- Simple case - no JOINs. Select a random entry from #s.

IF @thisJoin = 'NONE'

BEGIN

 SELECT TOP 1 @SelectStmt = 'SELECT ' + s.s,

 @FromStmt = 'FROM ' + s.f,

 @WhereStmt = CASE WHEN s.w != '' THEN 'WHERE ' +

s.w ELSE '' END

 FROM #s s

 ORDER BY NEWID()

END

-- Construct a relationship table to describe the constraints, based on the TPC-C

documentation

-- Cannot use system views as HammerDB does not formalise the relationships

-- @s1 = child, @s2 = parent

DROP TABLE IF EXISTS #r

CREATE TABLE #r (id INT IDENTITY(1,1) NOT NULL PRIMARY KEY,

 s1 VARCHAR(255), s1c VARCHAR(255), s2 VARCHAR(255), s2c VARCHAR(255))

INSERT INTO #r

 SELECT 'district', 'd_w_id', 'warehouse', 'w_id' UNION ALL

 SELECT 'customer', 'c_w_id', 'district', 'd_w_id' UNION ALL

 SELECT 'customer', 'c_d_id', 'district', 'd_id' UNION ALL

 SELECT 'history', 'h_c_w_id', 'customer', 'c_w_id' UNION ALL

 SELECT 'history', 'h_c_d_id', 'customer', 'c_d_id' UNION ALL

 SELECT 'history', 'h_c_id', 'customer', 'c_id' UNION ALL

 SELECT 'history', 'h_w_id', 'district', 'd_w_id' UNION ALL

 SELECT 'history', 'h_d_id', 'district', 'd_id' UNION ALL

 SELECT 'new_order', 'no_w_id', 'orders', 'o_w_id' UNION ALL

 SELECT 'new_order', 'no_d_id', 'orders', 'o_d_id' UNION ALL

 SELECT 'new_order', 'no_o_id', 'orders', 'o_id' UNION ALL

 SELECT 'orders', 'o_w_id', 'customer', 'c_w_id' UNION ALL

 SELECT 'orders', 'o_d_id', 'customer', 'c_d_id' UNION ALL

 SELECT 'orders', 'o_c_id', 'customer', 'c_id' UNION ALL

 SELECT 'order_line', 'ol_w_id', 'orders', 'o_w_id' UNION ALL

 SELECT 'order_line', 'ol_d_id', 'orders', 'o_d_id' UNION ALL

 SELECT 'order_line', 'ol_o_id', 'orders', 'o_id' UNION ALL

 SELECT 'order_line', 'ol_supply_w_id', 'stock', 's_w_id' UNION ALL

 SELECT 'order_line', 'ol_i_id', 'stock', 's_i_id' UNION ALL

 SELECT 'stock', 's_w_id', 'warehouse', 'w_id' UNION ALL

 SELECT 'stock', 's_i_id', 'item', 'i_id'

-- Inner, left, right JOIN

DECLARE @s1 INT, @s2 INT, @rN INT = 0

SELECT @s1 = (SELECT TOP 1 s.id FROM #s s ORDER BY NEWID())

SELECT @s2 = (SELECT TOP 1 s.id FROM #s s WHERE s.id != @s1 ORDER BY NEWID())

DECLARE @f1 VARCHAR(255), @f2 VARCHAR(255)

SELECT @f1 = (SELECT s.f FROM #s s WHERE s.id = @s1)

SELECT @f2 = (SELECT s.f FROM #s s WHERE s.id = @s2)

IF @thisJoin IN ('LEFT JOIN', 'RIGHT JOIN', 'INNER JOIN', 'CROSS JOIN')

BEGIN

 IF EXISTS (SELECT r.id FROM #r r WHERE (r.s1 = @f1 AND r.s2 = @f2) OR (r.s2 = @f1

AND r.s1 = @f2))

 BEGIN

 SET @rN = (SELECT TOP 1 r.id FROM #r r

 WHERE (r.s1 = @f1 AND r.s2 = @f2) OR (r.s2 = @f1 AND

r.s1 = @f2) ORDER BY NEWID())

 IF @thisJoin != 'CROSS JOIN'

 SELECT @FromStmt = r.s1 + ' ' + @thisJoin + ' ' + r.s2 + ' ON ' +

r.s1 + '.' + r.s1c + ' = ' + r.s2 + '.' + r.s2c

 FROM #r r

 WHERE r.id = @rN

- 134 -

 IF @thisJoin = 'CROSS JOIN'

 SELECT @FromStmt = r.s1 + ' ' + @thisJoin + ' ' + r.s2

 FROM #r r

 WHERE r.id = @rN

 SET @SelectStmt = (SELECT s.s FROM #s s WHERE s.id = @s1)

 SET @SelectStmt = @SelectStmt + ', '

 SET @SelectStmt = @SelectStmt + (SELECT s.s FROM #s s WHERE s.id = @s2)

 SET @WhereStmt = (SELECT s.w FROM #s s WHERE s.id = @s1)

 SET @WhereStmt = @WhereStmt + ' AND '

 SET @WhereStmt = @WhereStmt + (SELECT s.w FROM #s s WHERE s.id = @s2)

 IF LEFT(@WhereStmt, 5) = ' AND '

 SET @WhereStmt = RIGHT(@WhereStmt, LEN(@WhereStmt) - 4)

 IF RIGHT(@WhereStmt, 5) = ' AND '

 SET @WhereStmt = LEFT(@WhereStmt, LEN(@WhereStmt) - 4)

 SET @WhereStmt = LTRIM(RTRIM(@WhereStmt))

 END

 ELSE BEGIN

 -- No relationship found

 SET @SelectStmt = (SELECT TOP 1 s.s FROM #s s)

 SET @FromStmt = (SELECT TOP 1 s.f FROM #s s)

 SET @WhereStmt = (SELECT TOP 1 s.w FROM #s s)

 END

END

SET @SelectStmt = 'SELECT ' + @SelectStmt

SET @FromStmt = 'FROM ' + @FromStmt

IF LEN(@WhereStmt) > 0

 SET @WhereStmt = 'WHERE ' + @WhereStmt

--PRINT @SelectStmt

--PRINT @FromStmt

--PRINT @WhereStmt

INSERT INTO tpcc_queries.dbo.queries (query)

 SELECT @SelectStmt + ' ' + @FromStmt + ' ' + @WhereStmt

-- SELECT * FROM tpcc_queries.dbo.queries

END

import pyodbc, random, time, datetime

successCount = 0

failedCount = 0

def getConnection(db):

 conn = pyodbc.connect(

 "Driver={SQL Server Native Client 11.0};"

 "Server=localhost;"

 "Database=" + db + ";"

 "Trusted_Connection=yes;")

 conn.timeout = 20 # added to kill long-running queries

 return conn

def getRandomQuery(conn):

 r = random.randint(1, 10000)

 stmt = "SELECT query FROM tpcc_queries.dbo.queries WHERE id = ?"

 curs = conn.cursor()

 curs.execute(stmt, str(r))

 for q in curs:

- 135 -

 query = list(q)

 curs.close()

 return query

def runRandomQuery(conn, query):

 stmt = query[0]

 curs = conn.cursor()

 print(stmt)

 curs.execute(stmt)

qconn = getConnection('tpcc_queries')

mconn = getConnection('tpcc')

delayS = 0

durationS = 300

def main(qconn, mconn):

 query = getRandomQuery(qconn)

 runRandomQuery(mconn, query)

 time.sleep(delayS)

startTime = time.time()

while time.time() <= startTime + durationS and successCount <= 1800:

 try:

 main(qconn, mconn)

 successCount += 1

 except:

 print('--------------- Failed! -----------------')

 failedCount += 1

print('Success count: ' + str(successCount))

print('Failed count: ' + str(failedCount))

END OF DOCUM ENT.

